- Preface
- FAQ
- Guidelines for Contributing
- Contributors
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- 算法复习——排序
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Bitmap
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Add Two Numbers
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Palindrome Linked List
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Unique Binary Search Trees II
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Follow up
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Maximal Square
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- APAC 2016 Round D
- Problem A. Dynamic Grid
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume
- 術語表
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Jump Game
Source
- lintcode:
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example
A = [2,3,1,1,4], return true.
A = [3,2,1,0,4], return false.
题解(自顶向下-动态规划)
- State: f[i] 从起点出发能否达到 i
- Function:
f[i] = OR (f[j], j < i ~\&\&~ j + A[j] \geq i)
, 状态 jjj 转移到 iii, 所有小于 i 的下标 j 的元素中是否存在能从 j 跳转到 i 得 - Initialization: f[0] = true;
- Answer: 递推到第 N - 1 个元素时,f[N-1]
这种自顶向下的方法需要使用额外的 O(n)O(n)O(n) 空间,保存小于 N-1 时的状态。且时间复杂度在恶劣情况下有可能变为 1+2+⋯+n=O(n2)1 + 2 + \cdots + n = O(n^2)1+2+⋯+n=O(n2), 出现 TLE 无法 AC 的情况,不过工作面试能给出这种动规的实现就挺好的了。
C++ from top to bottom
class Solution {
public:
/**
* @param A: A list of integers
* @return: The boolean answer
*/
bool canJump(vector<int> A) {
if (A.empty()) {
return true;
}
vector<bool> jumpto(A.size(), false);
jumpto[0] = true;
for (int i = 1; i != A.size(); ++i) {
for (int j = i - 1; j >= 0; --j) {
if (jumpto[j] && (j + A[j] >= i)) {
jumpto[i] = true;
break;
}
}
}
return jumpto[A.size() - 1];
}
};
题解(自底向上-贪心法)
题意为问是否能从起始位置到达最终位置,我们首先分析到达最终位置的条件,从坐标 i 出发所能到达最远的位置为 f[i]=i+A[i]f[i] = i + A[i]f[i]=i+A[i],如果要到达最终位置,即存在某个 iii 使得 f[i]≥N−1f[i] \geq N - 1f[i]≥N−1, 而想到达 iii, 则又需存在某个 jjj 使得 f[j]≥i−1f[j] \geq i - 1f[j]≥i−1. 依此类推直到下标为 0.
以下分析形式虽为动态规划,实则贪心法!
- State: f[i] 从 iii 出发能否到达最终位置
- Function: f[j]=j+A[j]≥if[j] = j + A[j] \geq if[j]=j+A[j]≥i, 状态 jjj 转移到 iii, 置为
true
- Initialization: 第一个为
true
的元素为A.size() - 1
- Answer: 递推到第 0 个元素时,若其值为
true
返回true
C++ greedy, from bottom to top
class Solution {
public:
/**
* @param A: A list of integers
* @return: The boolean answer
*/
bool canJump(vector<int> A) {
if (A.empty()) {
return true;
}
int index_true = A.size() - 1;
for (int i = A.size() - 1; i >= 0; --i) {
if (i + A[i] >= index_true) {
index_true = i;
}
}
return 0 == index_true ? true : false;
}
};
题解(自顶向下-贪心法)
针对上述自顶向下可能出现时间复杂度过高的情况,下面使用贪心思想对 i 进行递推,每次遍历 A 中的一个元素时更新最远可能到达的元素,最后判断最远可能到达的元素是否大于 A.size() - 1
C++ greedy, from top to bottom
class Solution {
public:
/**
* @param A: A list of integers
* @return: The boolean answer
*/
bool canJump(vector<int> A) {
if (A.empty()) {
return true;
}
int farthest = A[0];
for (int i = 1; i != A.size(); ++i) {
if ((i <= farthest) && (i + A[i] > farthest)) {
farthest = i + A[i];
}
}
return farthest >= A.size() - 1;
}
};
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论