数学基础
- 线性代数
- 概率论与随机过程
- 数值计算
- 蒙特卡洛方法与 MCMC 采样
- 机器学习方法概论
统计学习
深度学习
- 深度学习简介
- 深度前馈网络
- 反向传播算法
- 正则化
- 深度学习中的最优化问题
- 卷积神经网络
- CNN:图像分类
- 循环神经网络 RNN
- Transformer
- 一、Transformer [2017]
- 二、Universal Transformer [2018]
- 三、Transformer-XL [2019]
- 四、GPT1 [2018]
- 五、GPT2 [2019]
- 六、GPT3 [2020]
- 七、OPT [2022]
- 八、BERT [2018]
- 九、XLNet [2019]
- 十、RoBERTa [2019]
- 十一、ERNIE 1.0 [2019]
- 十二、ERNIE 2.0 [2019]
- 十三、ERNIE 3.0 [2021]
- 十四、ERNIE-Huawei [2019]
- 十五、MT-DNN [2019]
- 十六、BART [2019]
- 十七、mBART [2020]
- 十八、SpanBERT [2019]
- 十九、ALBERT [2019]
- 二十、UniLM [2019]
- 二十一、MASS [2019]
- 二十二、MacBERT [2019]
- 二十三、Fine-Tuning Language Models from Human Preferences [2019]
- 二十四 Learning to summarize from human feedback [2020]
- 二十五、InstructGPT [2022]
- 二十六、T5 [2020]
- 二十七、mT5 [2020]
- 二十八、ExT5 [2021]
- 二十九、Muppet [2021]
- 三十、Self-Attention with Relative Position Representations [2018]
- 三十一、USE [2018]
- 三十二、Sentence-BERT [2019]
- 三十三、SimCSE [2021]
- 三十四、BERT-Flow [2020]
- 三十五、BERT-Whitening [2021]
- 三十六、Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings [2019]
- 三十七、CERT [2020]
- 三十八、DeCLUTR [2020]
- 三十九、CLEAR [2020]
- 四十、ConSERT [2021]
- 四十一、Sentence-T5 [2021]
- 四十二、ULMFiT [2018]
- 四十三、Scaling Laws for Neural Language Models [2020]
- 四十四、Chinchilla [2022]
- 四十七、GLM-130B [2022]
- 四十八、GPT-NeoX-20B [2022]
- 四十九、Bloom [2022]
- 五十、PaLM [2022] (粗读)
- 五十一、PaLM2 [2023](粗读)
- 五十二、Self-Instruct [2022]
- 句子向量
- 词向量
- 传统CTR 预估模型
- CTR 预估模型
- 一、DSSM [2013]
- 二、FNN [2016]
- 三、PNN [2016]
- 四、DeepCrossing [2016]
- 五、Wide 和 Deep [2016]
- 六、DCN [2017]
- 七、DeepFM [2017]
- 八、NFM [2017]
- 九、AFM [2017]
- 十、xDeepFM [2018]
- 十一、ESMM [2018]
- 十二、DIN [2017]
- 十三、DIEN [2019]
- 十四、DSIN [2019]
- 十五、DICM [2017]
- 十六、DeepMCP [2019]
- 十七、MIMN [2019]
- 十八、DMR [2020]
- 十九、MiNet [2020]
- 二十、DSTN [2019]
- 二十一、BST [2019]
- 二十二、SIM [2020]
- 二十三、ESM2 [2019]
- 二十四、MV-DNN [2015]
- 二十五、CAN [2020]
- 二十六、AutoInt [2018]
- 二十七、Fi-GNN [2019]
- 二十八、FwFM [2018]
- 二十九、FM2 [2021]
- 三十、FiBiNET [2019]
- 三十一、AutoFIS [2020]
- 三十三、AFN [2020]
- 三十四、FGCNN [2019]
- 三十五、AutoCross [2019]
- 三十六、InterHAt [2020]
- 三十七、xDeepInt [2023]
- 三十九、AutoDis [2021]
- 四十、MDE [2020]
- 四十一、NIS [2020]
- 四十二、AutoEmb [2020]
- 四十三、AutoDim [2021]
- 四十四、PEP [2021]
- 四十五、DeepLight [2021]
- 图的表达
- 一、DeepWalk [2014]
- 二、LINE [2015]
- 三、GraRep [2015]
- 四、TADW [2015]
- 五、DNGR [2016]
- 六、Node2Vec [2016]
- 七、WALKLETS [2016]
- 八、SDNE [2016]
- 九、CANE [2017]
- 十、EOE [2017]
- 十一、metapath2vec [2017]
- 十二、GraphGAN [2018]
- 十三、struc2vec [2017]
- 十四、GraphWave [2018]
- 十五、NetMF [2017]
- 十六、NetSMF [2019]
- 十七、PTE [2015]
- 十八、HNE [2015]
- 十九、AANE [2017]
- 二十、LANE [2017]
- 二十一、MVE [2017]
- 二十二、PMNE [2017]
- 二十三、ANRL [2018]
- 二十四、DANE [2018]
- 二十五、HERec [2018]
- 二十六、GATNE [2019]
- 二十七、MNE [2018]
- 二十八、MVN2VEC [2018]
- 二十九、SNE [2018]
- 三十、ProNE [2019]
- Graph Embedding 综述
- 图神经网络
- 一、GNN [2009]
- 二、Spectral Networks 和 Deep Locally Connected Networks [2013]
- 三、Fast Localized Spectral Filtering On Graph [2016]
- 四、GCN [2016]
- 五、神经图指纹 [2015]
- 六、GGS-NN [2016]
- 七、PATCHY-SAN [2016]
- 八、GraphSAGE [2017]
- 九、GAT [2017]
- 十、R-GCN [2017]
- 十一、 AGCN [2018]
- 十二、FastGCN [2018]
- 十三、PinSage [2018]
- 十四、GCMC [2017]
- 十五、JK-Net [2018]
- 十六、PPNP [2018]
- 十七、VRGCN [2017]
- 十八、ClusterGCN [2019]
- 十九、LDS-GNN [2019]
- 二十、DIAL-GNN [2019]
- 二十一、HAN [2019]
- 二十二、HetGNN [2019]
- 二十三、HGT [2020]
- 二十四、GPT-GNN [2020]
- 二十五、Geom-GCN [2020]
- 二十六、Graph Network [2018]
- 二十七、GIN [2019]
- 二十八、MPNN [2017]
- 二十九、UniMP [2020]
- 三十、Correct and Smooth [2020]
- 三十一、LGCN [2018]
- 三十二、DGCNN [2018]
- 三十三、AS-GCN
- 三十四、DGI [2018]
- 三十五、DIFFPOLL [2018]
- 三十六、DCNN [2016]
- 三十七、IN [2016]
- 图神经网络 2
- 图神经网络 3
- 推荐算法(传统方法)
- 一、Tapestry [1992]
- 二、GroupLens [1994]
- 三、ItemBased CF [2001]
- 四、Amazon I-2-I CF [2003]
- 五、Slope One Rating-Based CF [2005]
- 六、Bipartite Network Projection [2007]
- 七、Implicit Feedback CF [2008]
- 八、PMF [2008]
- 九、SVD++ [2008]
- 十、MMMF 扩展 [2008]
- 十一、OCCF [2008]
- 十二、BPR [2009]
- 十三、MF for RS [2009]
- 十四、 Netflix BellKor Solution [2009]
- 推荐算法(神经网络方法 1)
- 一、MIND [2019](用于召回)
- 二、DNN For YouTube [2016]
- 三、Recommending What Video to Watch Next [2019]
- 四、ESAM [2020]
- 五、Facebook Embedding Based Retrieval [2020](用于检索)
- 六、Airbnb Search Ranking [2018]
- 七、MOBIUS [2019](用于召回)
- 八、TDM [2018](用于检索)
- 九、DR [2020](用于检索)
- 十、JTM [2019](用于检索)
- 十一、Pinterest Recommender System [2017]
- 十二、DLRM [2019]
- 十三、Applying Deep Learning To Airbnb Search [2018]
- 十四、Improving Deep Learning For Airbnb Search [2020]
- 十五、HOP-Rec [2018]
- 十六、NCF [2017]
- 十七、NGCF [2019]
- 十八、LightGCN [2020]
- 十九、Sampling-Bias-Corrected Neural Modeling [2019](检索)
- 二十、EGES [2018](Matching 阶段)
- 二十一、SDM [2019](Matching 阶段)
- 二十二、COLD [2020 ] (Pre-Ranking 模型)
- 二十三、ComiRec [2020](https://www.wenjiangs.com/doc/0b4e1736-ac78)
- 二十四、EdgeRec [2020]
- 二十五、DPSR [2020](检索)
- 二十六、PDN [2021](mathcing)
- 二十七、时空周期兴趣学习网络ST-PIL [2021]
- 推荐算法之序列推荐
- 一、FPMC [2010]
- 二、GRU4Rec [2015]
- 三、HRM [2015]
- 四、DREAM [2016]
- 五、Improved GRU4Rec [2016]
- 六、NARM [2017]
- 七、HRNN [2017]
- 八、RRN [2017]
- 九、Caser [2018]
- 十、p-RNN [2016]
- 十一、GRU4Rec Top-k Gains [2018]
- 十二、SASRec [2018]
- 十三、RUM [2018]
- 十四、SHAN [2018]
- 十五、Phased LSTM [2016]
- 十六、Time-LSTM [2017]
- 十七、STAMP [2018]
- 十八、Latent Cross [2018]
- 十九、CSRM [2019]
- 二十、SR-GNN [2019]
- 二十一、GC-SAN [2019]
- 二十二、BERT4Rec [2019]
- 二十三、MCPRN [2019]
- 二十四、RepeatNet [2019]
- 二十五、LINet(2019)
- 二十六、NextItNet [2019]
- 二十七、GCE-GNN [2020]
- 二十八、LESSR [2020]
- 二十九、HyperRec [2020]
- 三十、DHCN [2021]
- 三十一、TiSASRec [2020]
- 推荐算法(综述)
- 多任务学习
- 系统架构
- 实践方法论
- 深度强化学习 1
- 自动代码生成
工具
- CRF
- lightgbm
- xgboost
- scikit-learn
- spark
- numpy
- matplotlib
- pandas
- huggingface_transformer
- 一、Tokenizer
- 二、Datasets
- 三、Model
- 四、Trainer
- 五、Evaluator
- 六、Pipeline
- 七、Accelerate
- 八、Autoclass
- 九、应用
- 十、Gradio
Scala
- 环境搭建
- 基础知识
- 函数
- 类
- 样例类和模式匹配
- 测试和注解
- 集合 collection(一)
- 集合collection(二)
- 集成 Java
- 并发
四、牛顿法
梯度下降法有个缺陷:它未能利用海森矩阵的信息。
当海森矩阵的条件数较大时,不同方向的梯度的变化差异很大。
在某些方向上,梯度变化很快;在有些方向上,梯度变化很慢。
梯度下降法未能利用海森矩阵,也就不知道应该优先搜索导数长期为负或者长期为正的方向。
本质上应该沿着负梯度方向搜索。但是沿着该方向的一段区间内,如果导数一直为正或者一直为负,则可以直接跨过该区间。前提是:必须保证该区间内,该方向导数不会发生正负改变。
当海森矩阵的条件数较大时,也难以选择合适的步长。
- 步长必须足够小,从而能够适应较强曲率的地方(对应着较大的二阶导数,即该区域比较陡峭)。
- 但是如果步长太小,对于曲率较小的地方(对应着较小的二阶导数,即该区域比较平缓)则推进太慢。
下图是利用梯度下降法寻找函数最小值的路径。该函数是二次函数,海森矩阵条件数为 5,表明最大曲率是最小曲率的5倍。红线为梯度下降的搜索路径。
它没有用最速下降法,而是用到线性搜索。如果是最速下降法,则相邻两次搜索的方向正交。
牛顿法结合了海森矩阵。
考虑泰勒展开式: $ MathJax-Element-189 $ 。其中 $ MathJax-Element-190 $ 为 $ MathJax-Element-193 $ 处的梯度; $ MathJax-Element-325 $ 为 $ MathJax-Element-193 $ 处的海森矩阵。
如果 $ MathJax-Element-194 $ 为极值点,则有: $ MathJax-Element-195 $ ,则有: $ MathJax-Element-196 $ 。
- 当 $ MathJax-Element-461 $ 是个正定的二次型,则牛顿法直接一次就能到达最小值点。
- 当 $ MathJax-Element-461 $ 不是正定的二次型,则可以在局部近似为正定的二次型,那么则采用多次牛顿法即可到达最小值点。
一维情况下,梯度下降法和牛顿法的原理展示:
梯度下降法:下一次迭代的点 $ MathJax-Element-199 $ 。
对于一维的情况,可以固定 $ MathJax-Element-200 $ 。由于随着迭代的推进, $ MathJax-Element-201 $ 绝对值是减小的(直到0),因此越靠近极值点, $ MathJax-Element-202 $ 越小。
牛顿法:目标是 $ MathJax-Element-203 $ 。
在一维情况下就是求解 $ MathJax-Element-204 $ 。牛顿法的方法是:以 $ MathJax-Element-205 $ 做 $ MathJax-Element-206 $ 切线,该切线过点 $ MathJax-Element-207 $ 。该切线在 $ MathJax-Element-208 $ 轴上的交点就是: $ MathJax-Element-209 $ 。
推广到多维情况下就是: $ MathJax-Element-244 $ 。
当位于一个极小值点附近时,牛顿法比梯度下降法能更快地到达极小值点。
如果在一个鞍点附近,牛顿法效果很差,因为牛顿法会主动跳入鞍点。而梯度下降法此时效果较好(除非负梯度的方向刚好指向了鞍点)。
仅仅利用了梯度的优化算法(如梯度下降法)称作一阶优化算法,同时利用了海森矩阵的优化算法(如牛顿法)称作二阶优化算法。
牛顿法算法:
输入:
- 目标函数 $ MathJax-Element-433 $
- 梯度 $ MathJax-Element-337 $
- 海森矩阵 $ MathJax-Element-213 $
- 精度要求 $ MathJax-Element-300 $
输出: $ MathJax-Element-433 $ 的极小值点 $ MathJax-Element-340 $
算法步骤:
选取初始值 $ MathJax-Element-341 $ , 置 $ MathJax-Element-343 $ 。
迭代,停止条件为:梯度收敛。迭代步骤为:
计算 $ MathJax-Element-344 $ 。
若 $ MathJax-Element-345 $ , 则停止计算,得到近似解 $ MathJax-Element-358 $ 。
若 $ MathJax-Element-347 $ , 则:
- 计算 $ MathJax-Element-223 $ ,并求 $ MathJax-Element-349 $ ,使得: $ MathJax-Element-225 $ 。
- 置 $ MathJax-Element-226 $ 。
- 置 $ MathJax-Element-360 $ ,继续迭代。
梯度下降法中,每一次 $ MathJax-Element-449 $ 增加的方向一定是梯度相反的方向 $ MathJax-Element-229 $ 。增加的幅度由 $ MathJax-Element-363 $ 决定,若跨度过大容易引发震荡。
而牛顿法中,每一次 $ MathJax-Element-449 $ 增加的方向是梯度增速最大的反方向 $ MathJax-Element-232 $ (它通常情况下与梯度不共线)。增加的幅度已经包含在 $ MathJax-Element-233 $ 中(也可以乘以学习率作为幅度的系数)。
深度学习中的目标函数非常复杂,无法保证可以通过上述优化算法进行优化。因此有时会限定目标函数具有
Lipschitz
连续,或者其导数Lipschitz
连续。Lipschitz
连续的定义:对于函数 $ MathJax-Element-461 $ ,存在一个Lipschitz
常数 $ MathJax-Element-235 $ ,使得:
Lipschitz
连续的意义是:输入的一个很小的变化,会引起输出的一个很小的变化。与之相反的是:输入的一个很小的变化,会引起输出的一个很大的变化
凸优化在某些特殊的领域取得了巨大的成功。但是在深度学习中,大多数优化问题都难以用凸优化来描述。
凸优化的重要性在深度学习中大大降低。凸优化仅仅作为一些深度学习算法的子程序。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论