- 译者序
- 前言
- 第1章 问答环节
- 第2章 Python 如何运行程序
- 第3章 如何运行程序
- 第4章 介绍 Python 对象类型
- 第5章 数字
- 第6章 动态类型简介
- 第7章 字符串
- 第8章 列表与字典
- 第9章 元组、文件及其他
- 第10章 Python 语句简介
- 第11章 赋值、表达式和打印
- 第12章 if 测试和语法规则
- 第13章 while 和 for 循环
- 第14章 迭代器和解析,第一部分
- 第15章 文档
- 第16章 函数基础
- 第17章 作用域
- 第18章 参数
- 第19章 函数的高级话题
- 第20章 迭代和解析,第二部分
- 第21章 模块:宏伟蓝图
- 第22章 模块代码编写基础
- 第23章 模块包
- 第24章 高级模块话题
- 第25章 OOP:宏伟蓝图
- 第27章 更多实例
- 第28章 类代码编写细节
- 第29章 运算符重载
- 第30章 类的设计
- 第31章 类的高级主题
- 第32章 异常基础
- 第34章 异常对象
- 第35章 异常的设计
- 第36章 Unicode 和字节字符串
- 字符串基础知识
- Python 的字符串类型
- 文本和二进制文件
- Python 3.0 中的字符串应用
- 转换
- 编码 Unicode 字符串
- 编码非ASCII文本
- 编码和解码非ASCII文本
- 其他 Unicode 编码技术
- 转换编码
- 在 Python 2.6 中编码 Unicode 字符串
- 源文件字符集编码声明
- 使用 Python 3.0 Bytes 对象
- 序列操作
- 创建 bytes 对象的其他方式
- 混合字符串类型
- 使用 Python 3.0(和 Python 2.6)bytearray 对象
- 使用文本文件和二进制文件
- Python 3.0 中的文本和二进制模式
- 类型和内容错误匹配
- 使用 Unicode 文件
- 在 Python 3.0 中处理 BOM
- Python 2.6 中的 Unicode 文件
- Python 3.0 中其他字符串工具的变化
- Struct二进制数据模块
- pickle对象序列化模块
- XML解析工具
- 本章小结
- 本章习题
- 习题解答
- 第37章 管理属性
- 第38章 装饰器
- 第39章 元类
- 附录A 安装和配置
- 附录B 各部分练习题的解答
- 作者介绍
- 封面介绍
理解列表解析
尽管如此,在这种情况下,对当前额外的复杂度来说有可观的性能优势:基于对运行在当前Python下的测试,map调用比等效的for循环要快两倍,而列表解析往往比map调用要稍快一些[1]。速度上的差距是来自于底层实现上,map和列表解析是在解释器中以C语言的速度来运行的,比Python的for循环代码在PVM中步进运行要快得多。
因为for循环让逻辑变得更清晰,基于简单性我们通常推荐使用。尽管如此,map和列表解析作为一种简单的迭代是容易理解和使用的,而且如果应用对速度特别重视的话。此外,因为map和列表解析都是表达式,从语法上来说,它们能够在for循环语句不能够出现的地方使用。例如,在一个lambda函数的主体中或者是在一个列表或字典常量中。然而应该尝试让map调用和列表解析保持简单。对于更复杂的任务,用完整的语句来替代。
为什么要在意:列表解析和map
这里介绍一个实际应用中更现实的列表和map的例子(我们在第14章的列表解析中解决过这个问题,在这里复习它并增加了基于map的替代方案)。回顾文件的readlines方法将返回以换行符\n结束的行:
如果不想要换行符,可以使用列表解析或map调用通过一个步骤从所有的行中将它们都去掉(map的结果在Python 3.0中是可迭代的,因此,我们必须通过list来运行它们以一次性看到其所有结果):
这里最后两个使用了文件迭代器(这里实际上是指不需要一个方法调用就能够在迭代中获取所有的行)。map调用要比列表解析稍长一些,但是无论哪种方法都没有必要明确地管理结果列表的构造。
列表解析还能作为一种列选择操作来使用。Python的标准SQL数据库API将返回查询结果保存为与下边类似的元组的列表:列表就是表,而元组为行,元组中的元素就是列的值:
一个for循环能够手动从选定的列中提取出所有的值,但是map和列表解析能够一步就做到这一点,并且更快。
第一种方法使用元组赋值来解包列表中的行元组,第二种方法使用索引。在Python 2.6(但不包含Python 3.0,参见第18章关于Python 2.6参数解包的说明),map也可以对其参数使用元组解包:
更多关于Python的数据库API请参考其他的书籍和资源。
除了运行函数和表达式之间的区别,Python 3.0中的map和列表解析的最大区别是:map是一个迭代器,根据需求产生结果;为了同样地实现内存节省,列表解析必须编码为生成器表达式(本章的主题之一)。
[1]这种通常意义上的性能差异取决于调用方式,以及Python本身的变动和优化。例如,最近的Python版本使for循环加速。不过,一般来说,列表解析还是比for循环快很多,甚至也比map快(不过,对于内置函数来说map还是赢家)。要自行测试这些方案的速度,可以参考标准库time模块的time.clock和time.time调用,与2.4版新增的timeit模块,或者本章接下来的“对迭代各种方法进行计时”一节。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论