- .NET 指南
- 开始操作
- .NET 教程
- .NET 体系结构组件
- .NET Standard
- 什么是.NET 标准中的新增功能
- 目标框架
- .NET 术语表
- 使用 mdoc 生成文档
- .NET 的体系结构指南
- 使用 ASP.NET Core 和 Azure 构建新式 Web 应用程序
- 现代 Web 应用程序的特征
- 传统 Web 应用程序和单页面应用程序 (Spa) 之间进行选择
- 常见的客户端 Web 技术
- 开发 ASP.NET Core MVC 应用程序
- 使用 ASP.NET Core 应用中的数据
- 测试 ASP.NET Core MVC 应用程序
- Azure 的开发过程
- Azure 托管的 ASP.NET 核心 Web 应用的建议
- 使用 Azure 云和 Windows 容器更新现有 .NET 应用程序 (v1.0)
- 提升和移动现有应用 Azure IaaS
- 将关系数据库迁移到 azure
- 直接迁移现有应用 DevOps
- 到提起并移动现有的.NET 应用到云 DevOps 通用应用程序的原因
- 云 devops 通用应用程序中的 Microsoft 技术
- 云优化应用程序如何呢?
- 如何将现有的.NET 应用程序部署到 Azure App Service
- 将现有的.NET 应用程序部署为 Windows 容器
- 何时不将部署到 Windows 容器
- 何时在你的本地部署 Windows 容器 IaaS VM 基础结构
- 何时将 Windows 容器部署到 Azure Vm (IaaS 云)
- 何时到 Service Fabric 中部署 Windows 容器
- 何时将 Windows 容器部署到 Azure 容器服务 (即,Kubernetes)
- 构建可复原的服务供云: 采用在云中的暂时性故障
- 更新你的应用的监视和遥测
- 更新使用 CI/CD 管道和 DevOps 工具在云中的应用程序的生命周期
- 将迁移到混合云方案
- 演练和技术获取启动的概述
- 技术演练列表
- 技术演练列表
- 结论
- 容器和 Docker 简介
- 什么是 Docker?
- Docker 术语
- Docker 容器、 图像和注册表
- Docker 应用程序生命周期的介绍
- DevOps 协作基础的容器
- 有关适用于容器化应用的 Microsoft 平台和工具的简介
- 使用 Docker 和 Microsoft Azure 设计和开发容器化应用
- Docker 应用程序设计
- 常见容器设计原则
- 整体应用程序
- 状态和 Docker 应用程序中的数据
- SOA 应用程序
- 协调微服务和以高可伸缩性和可用性的 multicontainer 应用程序
- Docker 应用的开发环境
- 对于 Docker 应用程序的内部循环开发工作流
- 使用 Visual Studio Tools for Docker (在 Windows 上的 Visual Studio)
- 使用在 DockerFile 中的 Windows PowerShell 命令来设置 Windows 容器 (Docker 标准基于)
- 使用 Microsoft 工具的 Docker 应用程序 DevOps 工作流
- Docker 应用程序的外部循环 DevOps 工作流中的步骤
- 运行、管理和监视 Docker 生产环境
- 在生产环境中运行由和基于微服务的应用程序
- 管理生产 Docker 环境
- 监视容器化应用程序服务
- 关键结论
- .NET 微服务。 适用于容器化 .NET 应用程序的体系结构
- .NET 微服务。 适用于容器化 .NET 应用程序的体系结构
- 容器和 Docker 简介
- 什么是 Docker?
- Docker 术语
- Docker 容器、 图像和注册表
- 为 Docker 容器选择 .NET Core 还是 .NET Framework
- 一般性指导原则
- 何时选择 Docker 容器中的.NET 核心
- 何时选择 Docker 容器中的.NET Framework
- 决策表:.NET 框架,用于 Docker
- .NET 容器定向到何种操作系统
- 正式.NET Docker 映像
- 构建基于容器和微服务的应用程序
- Containerizing 整体应用程序
- 状态和 Docker 应用程序中的数据
- 面向服务的体系结构
- 微服务体系结构
- 每个微服务构成的数据自主性
- 与物理体系结构的逻辑体系结构
- 分布式的数据管理挑战和解决方案
- 标识每个微服务的域模型边界
- 直接与 API 网关模式的微服务构成客户端通信
- 在微服务体系结构的通信
- 基于消息的异步通信
- 创建、 不断发展,和版本控制 microservice Api 和协定
- 微服务可寻址性和服务注册表
- 创建复合 UI 基于微服务,包括 visual UI 形状和布局由多个微服务生成
- 复原和微服务中的高可用性
- 协调微服务和多容器应用程序的高可伸缩性和可用性
- 使用 Azure Service Fabric
- 基于 Docker 的应用程序的开发流程
- Docker 应用的开发工作流
- 在 Linux 或 Windows Nano Server 主机上部署基于单容器的 .NET Core Web 应用
- 将旧版整体式 .NET Framework 应用程序迁移到 Windows 容器
- 设计和开发基于微服务的多容器 .NET 应用程序
- 设计面向微服务构成的应用程序
- 创建简单的数据驱动 CRUD 微服务
- 定义与 docker-compose.yml 多容器应用程序
- 使用运行的容器的数据库服务器
- 实现基于事件的微服务 (集成事件) 之间的通信
- 实现使用 RabbitMQ 开发或测试环境事件总线
- 订阅事件
- 测试 ASP.NET 核心服务和 web 应用
- 使用 DDD 和 CQRS 模式降低微服务中的业务复杂性
- 应用中的微服务构成的简化的 CQRS 和 DDD 模式
- EShopOnContainers DDD 微服务中的应用 CQRS 和 CQS 方法
- 在 CQRS 微服务中实现读取/查询
- 设计 DDD 面向微服务
- 设计 microservice 域模型
- 实现 microservice 域模型与.NET 核心
- Seedwork (可重用基类,这些类和接口,您的域模型)
- 实现值对象
- 使用枚举类,而不枚举类型
- 设计域模型层中的验证
- 客户端验证 (验证在表示层)
- 域事件: 设计和实现
- 设计基础结构持久性层
- 实现与实体框架核心基础结构持久性层
- 作为持久性基础结构使用 NoSQL 数据库
- 设计微服务应用程序层和 Web API
- 实现微服务应用程序层使用 Web API
- 实现具有恢复能力的应用程序
- 处理部分失败
- 用于处理部分失败的策略
- 实现重试使用指数退让
- 实现弹性 Entity Framework 核心 SQL 连接
- 实现自定义 HTTP 调用的重试使用指数退让
- 使用 Polly 和实施 HTTP 调用重试使用指数退让
- 实现断路器模式
- 运行状况监视
- 保护 .NET 微服务和 Web 应用程序
- 有关在.NET 微服务和 web 应用程序的授权
- 在开发过程中安全地存储应用程序机密
- 使用 Azure 密钥保管库在生产时保护机密
- 记住的要点
- 为服务器应用选择 .NET Core 或 .NET Framework
- 什么是 托管代码 ?
- Automatic Memory Management
- 公共语言运行时 (CLR)
- 语言独立性和与语言无关的组件
- 语言独立性和与语言无关的组件
- 框架库
- .NET Framework 类库概述
- 在 .NET 中使用基类型
- 常规类型系统
- .NET Framework 中的类型转换
- .NET 中的类型转换表
- .NET 中的格式化类型
- 标准数字格式字符串
- 自定义数字格式字符串
- 标准日期和时间格式字符串
- 自定义日期和时间格式字符串
- 标准 TimeSpan 格式字符串
- 自定义的 TimeSpan 格式字符串
- 枚举格式字符串
- 复合格式设置
- 执行格式设置操作
- 如何:用前导零填充数字
- 如何:从特定日期中提取星期几
- 如何:定义和使用自定义数值格式提供程序
- 如何:往返日期和时间值
- 如何:将用户在 Web 控件中输入的数值转换为数字
- 如何:向 Web 用户显示本地化的日期和时间信息
- 如何:显示日期和时间值中的毫秒
- 如何:用非公历日历显示日期
- 操作在.NET 中的字符串
- 在.NET 中使用字符串的最佳做法
- .NET 中的基本字符串操作
- 在.NET 中创建新的字符串
- 剪裁和移除从.NET 中的字符串的字符
- .NET 中的空白字符串
- 比较.NET 中的字符串
- 更改.NET 中的大小写
- 在.NET 中使用 StringBuilder 类
- 如何: 在.NET 中执行基本字符串操作
- .NET 正则表达式
- 正则表达式语言 - 快速参考
- 正则表达式中的字符转义
- 正则表达式中的字符类
- 正则表达式中的定位点
- 正则表达式中的分组构造
- 正则表达式中的限定符
- 正则表达式中的反向引用构造
- 正则表达式中的备用构造
- 正则表达式中的替代
- 正则表达式选项
- 正则表达式中的其他构造
- .NET 中的正则表达式的最佳实践
- 正则表达式对象模型
- 正则表达式行为的详细信息
- 正则表达式中的回溯
- 正则表达式中的编译和重复使用
- 正则表达式中的线程安全
- 正则表达式示例
- 正则表达式示例:扫描 HREF
- 正则表达式示例:更改日期格式
- 如何:从 URL 中提取协议和端口号
- 如何:从字符串中剥离无效字符
- 如何:确认字符串是有效的电子邮件格式
- 在.NET 中编码的字符
- 在.NET 中分析字符串
- NET 中分析数值字符串
- 分析日期和时间字符串.NET 中
- .NET 中分析其他字符串
- .NET 类库
- .NET 可移植性分析器
- 在 .NET 中处理和引发异常
- .NET 程序集文件格式
- 内存管理和.NET 中的垃圾回收
- 垃圾回收
- 垃圾回收的基础
- 垃圾回收和性能
- 被动回收
- 滞后时间模式
- 针对共享 Web 承载优化
- 垃圾回收通知
- 应用程序域资源监控
- 弱引用
- 泛型类型(泛型)概述
- 委托和 lambda
- LINQ(语言集成查询)
- 常规类型系统和公共语言规范
- 异步概述
- 深入了解异步
- 异步编程模式
- 基于任务的异步模式 (TAP)
- 实现基于任务的异步模式
- 使用基于任务的异步模式
- 与其他异步模式和类型互操作
- 基于事件的异步模式 (EAP)
- 使用基于事件的异步模式进行多线程编程
- 基于事件的异步模式概述
- 实现基于事件的异步模式
- 实现基于事件的异步模式的最佳做法
- 确定何时实现基于事件的异步模式
- 演练:实现支持基于事件的异步模式的组件
- 演练:实现支持基于事件的异步模式的组件
- 如何:实现基于事件的异步模式的客户端
- 如何:使用支持基于事件的异步模式的组件
- 异步编程模型 (APM)
- 使用 IAsyncResult 调用异步方法
- 使用 AsyncWaitHandle 阻止应用程序的执行
- 通过结束异步操作来阻止应用程序执行
- 轮询异步操作的状态
- 使用 AsyncCallback 委托结束异步操作
- 使用 AsyncCallback 委托和状态对象
- 使用委托进行异步编程
- 使用异步方式调用同步方法
- 本机互操作性
- 集合和数据结构
- .NET Framework 中的数字
- 日期、时间和时区
- 时区概述
- 在 DateTime、DateTimeOffset、TimeSpan 和 TimeZoneInfo 之间进行选择
- 查找本地系统上定义的时区
- 如何: 枚举计算机上存在的时区
- 如何: 访问预定义的 UTC 和当地时间区域对象
- 如何: 实例化 TimeZoneInfo 对象
- 实例化 DateTimeOffset 对象
- 如何: 创建不带调整规则的时区
- 如何: 创建带有调整规则的时区
- 保存和还原时区
- 如何: 将时区保存到嵌入的资源
- 如何: 从嵌入的资源还原时区
- 使用日历
- 使用日期和时间执行算术运算
- 如何: 在日期和时间运算中使用时区
- 在 DateTime 与 DateTimeOffset 之间进行转换
- 在各时区之间转换时间
- 如何: 解决不明确的时间
- 如何: 让用户解决不明确的时间
- 处理和引发事件
- 如何:引发和使用事件
- 如何:使用事件属性处理多个事件
- 如何:在 Web 窗体应用程序中使用事件
- 观察程序设计模式
- 观察程序设计模式最佳做法
- 如何:实现提供程序
- 如何:实现观察程序
- 托管执行过程
- 元数据和自描述组件
- 在 .NET Framework 中构建控制台应用程序
- .NET Framework 中的并行处理和并发
- .NET Framework 应用程序要点
- 文件和流 I/O
- 对 .NET Framework 应用程序进行全球化和本地化
- 全球化
- 本地化评审
- 本地化
- 不区分区域性的字符串操作
- 执行不区分区域性的字符串操作
- 执行不区分区域性的字符串比较
- 执行不区分区域性的大小写更改
- 在集合中执行不区分区域性的字符串操作
- 在数组中执行不区分区域性的字符串操作
- 开发全球通用应用程序的最佳做法
- 利用特性扩展元数据
- 应用特性
- 编写自定义特性
- 检索存储在特性中的信息
- 框架设计准则
- 命名准则
- 大小写约定
- 通用命名约定
- 程序集和 DLL 的名称
- 命名空间的名称
- 类、结构和接口的名称
- 类型成员的名称
- 命名参数
- 命名资源
- 类型设计准则
- 在类和结构之间选择
- 抽象类设计
- 静态类设计
- 接口设计
- 结构设计
- 枚举设计
- 嵌套类型
- 成员设计准则
- 成员重载
- 属性设计
- 构造函数设计
- 事件设计
- 字段设计
- 扩展方法
- 运算符重载
- 参数设计
- 扩展性设计
- 未密封类
- 受保护的成员
- 事件和回调
- 虚成员
- 抽象(抽象类型和接口)
- 用于实现抽象的基类
- 密封
- 异常设计准则
- 异常引发
- 使用标准异常类型
- 异常和性能
- 使用准则
- 数组
- 特性
- 集合准则
- 序列化
- System.Xml 使用情况
- 相等运算符
- 常见设计模式
- 依赖项属性
- 释放模式
- XML 文档和数据
- XML 处理选项
- 内存中 XML 数据处理
- 使用 DOM 模型处理 XML 数据
- XML 文档对象模型 (DOM)
- XML 节点类型
- XML 文档对象模型 (DOM) 层次结构
- 将对象层次结构映射到 XML 数据
- 创建 XML 文档
- 将 XML 文档读入 DOM
- 嵌入到文档中的样式表指令
- 从读取器中加载数据
- 加载 DOM 时的空白和有效空白处理
- 访问 DOM 中的属性
- 将实体声明和实体引用读入 DOM
- 保留实体引用
- 扩展但不保留实体引用
- 将节点插入 XML 文档中
- 在 DOM 中创建新节点
- 为 DOM 中的元素创建新属性
- 创建新节点时的 XML 元素和属性名验证
- 创建新实体引用
- 命名空间对包含元素和属性的新节点的实体引用扩展的影响
- 复制现有节点
- 将现有节点从一个文档复制到另一个文档
- 复制文档片段
- 移除 XML 文档中的节点、内容和值
- 从 DOM 中移除节点
- 移除 DOM 中元素节点的属性
- 移除 DOM 中的节点内容
- 修改 XML 文档中的节点、内容和值
- 在 DOM 中验证 XML 文档
- 保存和写出文档
- 使用 XPath 导航选择节点
- 解析外部资源
- 使用 XmlNameTable 的对象比较
- NamedNodeMap 和 NodeList 中的节点集合
- 按名称或索引检索未排序节点
- 按索引检索已排序节点
- NodeList 和 NamedNodeMap 的动态更新
- DOM 中的命名空间支持
- DOM 中的命名空间和 DTD
- 更改 XML 文档中的命名空间声明
- 更改命名空间前缀属性
- 使用 mlNodeChangedEventArgs 的 XML 文档中的事件处理
- 扩展 DOM
- 使用 XPath 数据模型处理 XML 数据
- 使用 XPathDocument 和 XmlDocument 读取 XML 数据
- 使用 XPathNavigator 选择、计算和匹配 XML 数据
- 使用 XPathNavigator 选择 XML 数据
- 使用 XPathNavigator 计算 XPath 表达式
- 使用 XPathNavigator 匹配节点
- XPath 查询识别的节点类型
- XPath 查询和命名空间
- 已编译的 XPath 表达式
- XPath 命名空间浏览
- 使用 XPathNavigator 访问 XML 数据
- 使用 XPathNavigator 的节点集定位
- 使用 XPathNavigator 的属性和命名空间节点定位
- 使用 XPathNavigator 提取 XML 数据
- 使用 XPathNavigator 访问强类型 XML 数据
- 用户定义的函数和变量
- 使用 XPathNavigator 编辑 XML 数据
- 使用 XPathNavigator 插入 XML 数据
- 使用 XPathNavigator 修改 XML 数据
- 使用 XPathNavigator 移除 XML 数据
- 使用 XPathNavigator 验证架构
- 使用 LINQ to XML 处理 XML 数据
- XSLT 转换
- 使用 XslCompiledTransform 类
- XslCompiledTransform 类的输入
- XslCompiledTransform 类的输出选项
- 在 XSLT 处理期间解析外部资源
- 扩展 XSLT 样式表
- XSLT 扩展对象
- XSLT 参数
- 使用 msxsl:script 的脚本块
- 可恢复的 XSLT 错误
- 如何:转换节点片断
- 从 XslTransform 类迁移
- 如何:迁移 XslTransform 代码
- XSLT 安全注意事项
- XSLT 编译器 (xsltc.exe)
- 如何:通过使用程序集执行 XSLT 转换
- XslTransform 类的 XSLT 转换
- XslTransform 类中任意行为的实现
- XslTransform 类实现 XSLT 处理器
- XslTransform 的输出
- 不同存储区的 XSLT 转换
- 解析外部 XSLT 样式表和文档
- 样式表参数和扩展对象的 XsltArgumentList
- XSLT 样式表脚本使用<msxsl: script>
- 对 msxsl:node-set() 函数的支持
- 转换中的节点集
- 转换中的结果树片断
- 转换中的 XPathNavigator
- 转换中的 XPathNodeIterator
- XslTransform 的 XPathDocument 输入
- XslTransform 的 XmlDataDocument 输入
- XslTransform 的 XmlDocument 输入
- 使用 XML 架构
- XML 架构对象模型 (SOM)
- XML 架构对象模型概述
- 读写 XML 架构
- 生成 XML 架构
- 遍历 XML 架构
- 编辑 XML 架构
- 包含或导入 XML 架构
- 用于编译架构的 XmlSchemaSet
- 后架构编译信息集
- 使用 XmlSchemaSet 进行 XML 架构 (XSD) 验证
- XmlSchemaCollection 架构编译
- 使用 XmlSchemaCollection 进行 XDR 验证
- 使用 XmlSchemaCollection 进行 XML 架构 (XSD) 验证
- XmlSchemaValidator 基于推送的验证
- 推断 XML 架构
- 从 XML 文档推断架构
- 推断架构节点类型和结构的规则
- 推断简单类型的规则
- 关系数据和 ADO.NET 的 XML 集成
- 管理 XML 文档中的命名空间
- System.Xml 类中的类型支持
- 将 XML 数据类型映射到 CLR 类型
- XML 类型支持实现说明
- XML 数据类型的转换
- 将字符串转换为 .NET Framework 数据类型
- 将 .NET Framework 类型转换为字符串
- 托管线程处理
- 托管线程处理基本知识
- 线程与线程处理
- 托管线程中的异常
- 为多线程处理同步数据
- 托管线程状态
- 前台和后台线程
- Windows 中的托管和非托管线程处理
- Thread.Suspend、垃圾回收和安全点
- 线程本地存储区:线程相关的静态字段和数据槽
- 托管线程中的取消
- 如何:通过轮询侦听取消请求
- 如何:注册取消请求的回调
- 如何:侦听具有等待句柄的取消请求
- 如何:侦听多个取消请求
- 使用线程和线程处理
- 启动时创建线程并传递数据
- 暂停和继续线程
- 销毁线程
- 调度线程
- 以协作方式取消线程
- 托管线程处理的最佳做法
- 线程处理对象和功能
- 托管线程池
- 计时器
- EventWaitHandle、AutoResetEvent、CountdownEvent、ManualResetEvent
- EventWaitHandle
- AutoResetEvent
- ManualResetEvent 和 ManualResetEventSlim
- CountdownEvent
- Mutexes
- 互锁操作
- 读取器/编写器锁
- Semaphore 和 SemaphoreSlim
- 同步基元概述
- 屏障 (.NET Framework)
- 如何:使用屏障来使并发操作保持同步
- SpinLock
- 如何:使用 SpinLock 进行低级别同步
- 如何:在 SpinLock 中启用线程跟踪模式
- SpinWait
- 如何:使用 SpinWait 实现两阶段等待操作
- .NET 中的并行编程
- 任务并行库 (TPL)
- 数据并行(任务并行库)
- 如何:编写简单的 Parallel.For 循环
- 如何:编写简单的 Parallel.ForEach 循环
- 如何:编写具有线程局部变量的 Parallel.For 循环
- 如何:编写具有线程局部变量的 Parallel.ForEach 循环
- 如何:取消 Parallel.For 或 ForEach Loop
- 如何:处理并行循环中的异常
- 如何:加快小型循环体的速度
- 如何:使用并行类循环访问文件目录
- 基于任务的异步编程
- 使用延续任务来链接任务
- 已附加和已分离的子任务
- 任务取消
- 异常处理(任务并行库)
- 如何:使用 Parallel.Invoke 来执行并行操作
- 如何:从任务中返回值
- 如何:取消任务及其子级
- 如何:创建预先计算的任务
- 如何:使用并行任务遍历二叉树
- 如何:解除嵌套任务的包装
- 如何:防止子任务附加到其父任务
- 数据流(任务并行库)
- 如何:将消息写入数据流块和从数据流块读取消息
- 如何:实现制造者-使用者数据流模式
- 如何:在数据流块收到数据时执行操作
- 演练:创建数据流管道
- 如何:取消链接数据流块
- 演练:在 Windows 窗体应用程序中使用数据流
- 如何:取消数据流块
- 演练:创建自定义数据流块类型
- 如何:使用 JoinBlock 从多个源读取数据
- 如何:指定数据流块中的并行度
- 如何:在数据流块中指定任务计划程序
- 演练:使用 BatchBlock 和 BatchedJoinBlock 提高效率
- 将 TPL 用于其他异步模式
- TPL 和传统 .NET Framework 异步编程
- 如何:在任务中包装 EAP 模式
- 数据并行和任务并行中的潜在缺陷
- 并行 LINQ (PLINQ)
- PLINQ 介绍
- 了解 PLINQ 中的加速
- PLINQ 中的顺序保留
- PLINQ 中的合并选项
- PLINQ 的潜在缺陷
- 如何:创建并执行简单的 PLINQ 查询
- 如何:在 PLINQ 查询中控制排序
- 如何:合并并行和顺序 LINQ 查询
- 如何:处理 PLINQ 查询中的异常
- 如何:取消 PLINQ 查询
- 如何:编写自定义 PLINQ 聚合函数
- 如何:在 PLINQ 中指定执行模式
- 如何:在 PLINQ 中指定合并选项
- 如何:使用 PLINQ 循环访问文件目录
- 如何:衡量 PLINQ 查询性能
- PLINQ 数据示例
- 用于并行编程的数据结构
- 并行诊断工具
- PLINQ 和 TPL 的自定义分区程序
- 如何:实现动态分区
- 如何:实现静态分区的分区程序
- PLINQ 和 TPL 中的 Lambda 表达式
- 其他阅读材料(并行编程)
- .NET Framework 中的安全性
- 安全性的基础概念
- 基于角色的安全性
- 主体和标识对象
- 如何:创建 WindowsPrincipal 对象
- 如何:创建 GenericPrincipal 和 GenericIdentity 对象
- 替换 Principal 对象
- 模拟与恢复
- .NET Framework 加密模型
- 加密服务
- 生成加密和解密的密钥
- 如何:将非对称密钥存储在密钥容器中
- 加密数据
- 解密数据
- 加密签名
- 使用哈希代码确保数据完整性
- 创建加密方案
- 如何:用对称密钥对 XML 元素进行加密
- 如何:用对称密钥对 XML 元素进行解密
- 如何:用非对称密钥对 XML 元素进行加密
- 如何:用非对称密钥对 XML 元素进行解密
- 如何:用 X.509 证书对 XML 元素进行加密
- 如何:用 X.509 证书对 XML 元素进行解密
- 如何:使用数字签名为 XML 文档签名
- 如何:验证 XML 文档的数字签名
- 如何:使用数据保护
- 如何:访问硬件加密设备
- 演练:创建加密应用程序
- 代码安全维护指南
- 保护状态数据
- 安全性和用户输入
- 安全和争用条件
- 安全性和进行中的代码生成
- .NET 中的序列化
- 序列化帮助主题
- 二进制序列化
- 序列化概念
- 基本序列化
- 有选择的序列化
- 自定义序列化
- 序列化过程中的步骤
- 版本容错序列化
- 序列化准则
- 如何:对序列化数据进行分块
- 如何: 确定是否可序列化的标准.NET 对象
- 请参阅
- 请参阅
- XML 和 SOAP 序列化
- 如何:控制派生类的序列化
- XML 序列化简介
- 如何:反序列化对象
- XML 序列化示例
- XML 架构定义工具和 XML 序列化
- How to: Use the XML Schema Definition Tool to Generate Classes and XML Schema Documents
- 使用属性控制 XML 序列化
- 用来控制 XML 序列化的属性
- 如何:指定 XML 流的替代元素名称
- 如何:序列化对象
- 如何:限定 XML 元素和 XML 属性名
- 使用 XML Web services 进行 XML 序列化
- 如何:将对象序列化为 SOAP 编码的 XML 流
- 如何:重写编码的 SOAP XML 序列化
- 用来控制编码的 SOAP 序列化的属性
- <system.xml.serialization> 元素
- <dateTimeSerialization> 元素
- <schemaImporterExtensions> 元素
- <xmlSerializer> 元素
- 序列化工具
- XML 序列化程序生成器工具 (Sgen.exe)
- XML Schema Definition Tool (Xsd.exe)
- .NET Framework 的序列化示例
- 基本序列化技术示例
- 使用 XmlSerializer 自定义序列化顺序
- SchemaImporterExtension 技术示例
- 版本容错序列化技术示例
- Web 服务泛型序列化技术示例
- Web 服务 IXmlSerializable 技术示例
- 使用 .NET Framework 针对多个平台开发
- 使用可移植类库的跨平台开发
- 将可移植类库与模型-视图-视图模型配合使用
- 面向多个平台的库的应用程序资源
- .NET Framework 对 Windows 应用商店应用程序和 Windows 运行时的支持情况
- 向 Windows 运行时传递 URI
- WindowsRuntimeStreamExtensions.AsRandomAccessStream(System.IO.Stream) 方法
在微服务体系结构的通信
在单个进程上运行的整体应用程序,在组件调用另一个使用语言级别方法或函数调用一样。 这些也可以紧密耦合,如果你要创建对象,与代码 (例如, new ClassName()
),或如果你使用的依赖关系注入通过引用抽象,而不是具体的对象实例可以在去耦方法中调用。 两种方式的同一进程中运行的对象。 从到基于微服务的应用程序的整体应用程序版本更改时的最大挑战在于于更改的通信机制。 从过程中方法调用转换为对服务的 RPC 调用的直接转换将导致聊天式并且将不会执行中的不有效通信分布式环境。 很好地为偶数称为 canon 已知的正确设计分布式的系统的挑战 的分布式计算 fallacies ,它列出在开发人员通常提出从移动时的假设整体分布式设计。
没有不一个解决方案中,但几个。 一个解决方案涉及隔离尽可能多地业务微服务。 然后,你将使用内部微服务之间进行异步通信并替代细化通常会在进程内通信中使用较粗粒度的通信的对象之间的通信。 通过分组调用,并返回聚合结果的多个内部调用,客户端的数据时,可以执行此操作。
基于微服务的应用程序是在多个进程或服务,通常甚至跨多个服务器或主机上运行的分布式的系统。 每个服务实例通常是一个过程。 因此,使用进程间通信协议,如 HTTP、 AMQP 或如 TCP,具体取决于每个服务的性质的二进制协议服务必须进行交互。
Microservice 社区提升这一理念"智能终结点和笨拙管道 。" 此广告语鼓励为分离尽可能之间微服务,并尽可能在单个 microservice 好地设计。 如前面所述,每个微服务将拥有其自己的数据和它自己域的逻辑。 但微服务组成的端到端应用程序通常只通过使用 REST 通信,而不是复杂的协议,如 WS-choreographed*的灵活事件驱动的通信,而不是集中式业务流程 orchestrators。
两个常用的协议为 HTTP 请求/响应与资源 Api (查询其中的绝大部分) 时,并跨多个微服务轻型异步消息传送通信时更新。 下列部分中的更详细地对它们进行了解释。
通信类型
客户端和服务可以通过许多不同类型的通信,每个面向不同的方案和目标进行通信。 最初,这些类型的通信可以分为两个轴。
如果协议是同步还是异步定义的第一个轴:
- 同步的协议。 HTTP 是同步的协议。 客户端发送一个请求,并等待从服务响应。 这是独立于客户端代码执行可同步 (线程被阻止) 或异步 (线程不会被阻止,和响应将最终到达回调)。 重要的一点是,协议 (HTTP/HTTPS) 是同步的当它收到 HTTP 服务器响应时,客户端代码仅可以继续其任务。
- 异步协议。 其他协议,如 AMQP (许多操作系统和云环境支持的协议) 使用异步消息。 客户端代码或消息发件人通常不会等待响应。 它只是将消息发送到 RabbitMQ 队列或任何其他消息代理时将发送形式的消息。
如果通信具有单一的接收方或多个接收方,第二个轴定义:
- 一个接收方。 每个请求必须由恰好一个接收方或服务来处理。 此通信的一个示例是 命令模式 。
- 多个接收方。 每个请求可以由零到多个接收方处理。 这种通信类型必须是异步的。 一个示例是 发布/订阅 机制在类似的模式下使用 事件驱动的体系结构 。 这基于事件 bus 接口或消息代理时传播事件; 通过多个微服务之间的数据更新它通常通过 service bus 或类似的类似项目实现 Azure Service Bus 使用 主题和订阅 。
基于微服务构成的应用程序通常将使用这些通信样式的组合。 最常见的类型时调用常规的 Web API HTTP 服务,将使用类似 HTTP/HTTPS 同步协议的单个接收方通信。 微服务通常还使用微服务之间进行异步通信的消息传递协议。
这些轴不很有必要知道,以便清楚起见对可能出现的通信机制,但它们不是生成微服务时的重要问题。 集成微服务时,所选协议的客户端线程执行即使的异步性质的异步性质是重要事项。 什么是重要正在能够将集成你微服务以异步方式同时保持独立微服务,如下面的部分中所述。
异步微服务集成将强制使用微服务构成的自主性
如前文所述,生成基于微服务的应用程序时,重要的一点是集成你微服务的方法。 理想情况下,你应尝试尽量减少内部微服务之间的通信。 较少之间的通信微服务,越好。 但当然,在许多情况下你将需要以某种方式集成微服务。 当你需要执行此操作时,关键的规则是微服务之间的通信应为异步。 并不意味着你需要使用特定协议 (例如,异步消息传送与同步 HTTP)。 它只是微服务之间的通信应仅通过以异步方式将数据传播完成,但不是尝试依赖于其他内部微服务作为初始服务的 HTTP 请求/响应操作的一部分。
如果可能,永远不会依赖于多个微服务,即使对于查询之间的同步通信 (请求/响应)。 每个微服务的目标是为自治上并供客户端使用者,即使是端到端应用程序的一部分的其他服务都已关闭或不正常。 如果你认为中的需要进行其他微服务 (如执行 HTTP 请求的数据查询) 从一个 microservice 调用以便能够提供对客户端应用程序的响应,必须将不会某些弹性的体系结构微服务失败。
此外,不仅有 HTTP 依赖项之间微服务,如图 4-15 的第一部分中所示,使用 HTTP 请求/响应周期创建长时请求链,使你微服务不自治但其性能也是影响只要该链中的服务之一表现不佳。
越添加微服务,例如查询请求之间的同步依赖关系,总体响应时间获取客户端应用程序的事情就越麻烦。
图 4-15 。 反模式和微服务之间的通信模式
如果你的 microservice 需要提升另一个微服务中的其他操作,如果可能,请不要执行该操作以同步方式和作为原始的微服务请求和答复操作的一部分。 而应以异步方式执行 (使用异步消息传送或集成事件、 队列,等等)。 但是,尽可能多地,不调用同步作为原始的同步请求和答复操作的一部分操作。
最后 (,这是其中大部分问题出现时生成微服务),如果初始 microservice 需要最初归其他微服务的数据时,不依赖于发出该数据的同步请求。 而是复制或传播到初始服务的数据库数据 (仅需要的属性),通过使用最终一致性 (通常通过使用集成事件,如在后面几节所述)。
如前文所述的部分中 标识每个微服务的域模型边界 ,复制跨多个微服务的某些数据不是设计错误 — 相反,当执行操作,您可以将数据转换到特定语言或其他域或绑定上下文的条款。 例如,在 eShopOnContainers 具有名为含有名为用户的实体都负责大部分用户的数据的 identity.api 微服务构成的应用程序。 但是,当你需要存储有关排序微服务内的用户数据,则将其存储作为名为 Buyer 不同实体。 买方实体共享相同的标识与原始用户实体,但它可能具有仅需要按排序域和而非整个用户配置文件的几个属性。
你可以使用任何协议进行通信和数据以异步方式在之间传播微服务以便具有最终一致性。 如前文所述,你可以使用集成事件,请使用事件总线或 broker 或你甚至可以通过轮询其他服务改为使用 HTTP 的消息。 并不重要。 重要的规则是创建您微服务之间的同步依赖关系。
以下各节介绍你可以考虑使用基于微服务构成的应用程序中的多个通信样式。
通信样式
有许多协议和你可以将用于通信,具体取决于你想要使用的通信类型的选项。 如果你使用的一种同步基于请求/响应的通信机制,协议,如 HTTP 和 REST 的方法是最常见的尤其是如果您要发布你的 Docker 主机或 microservice 群集外部服务。 如果内部 (在你的 Docker 主机或微服务群集) 的服务之间通信可能还想要使用二进制格式 (如 Service Fabric 远程处理或 WCF 中使用 TCP 和二进制格式) 的通信机制。 或者,你可以使用基于消息的异步通信机制,例如 AMQP。
也有多个消息格式,如 JSON 或 XML 或甚至是二进制格式,可能会更有效。 如果你选择的二进制格式不是一种标准,它可能并不是一个好办法公开发布你的服务使用该格式。 你微服务之间进行内部通信都可以使用非标准的格式。 (Docker orchestrators 或 Azure Service Fabric) 的你的 Docker 主机或 microservice 群集内或专有的客户端应用程序与微服务通信的微服务之间进行通信时,你可能需要这样做。
使用 HTTP 和 REST 请求/响应通信
当客户端使用请求/响应通信时,它将请求发送到服务,然后服务处理请求并发送回的响应。 请求/响应通信尤其适合对于实时 UI (实时用户接口) 从客户端应用程序查询数据。 因此,在微服务体系结构中你将可能使用此通信机制对于大多数查询,在图 4-16 中所示。
图 4-16 。 使用 HTTP 请求/响应通信 (同步或异步)
当客户端使用请求/响应通信时,它假设,响应将到达在短时间,通常少于一秒或几秒钟后最多。 对于响应延迟,你需要实施基于异步通信 消息传递模式 和 消息传送技术 ,这是我们在下一部分中介绍的不同方法。
请求/响应通信的常用体系结构样式是 REST 。 此方法为基础,并且紧密耦合的 HTTP 协议,使用 HTTP 谓词,如 GET、 POST 和 PUT。 创建服务时,其余部分将是最常用的体系结构的通信方法。 当你开发 ASP.NET 核心 Web API 服务时,你可以实现 REST 服务。
使用 HTTP REST 服务作为你的接口定义语言时,没有其他值。 例如,如果你使用 Swagger 元数据 来描述服务 API,你可以使用生成可以直接发现和使用你的服务的客户端存根的工具。
其他资源
- Martin Fowler。Richardson 成熟度模型。 REST 模型的说明。 http://martinfowler.com/articles/richardsonMaturityModel.html
- Swagger。 官方网站。 http://swagger.io/
推送和基于 HTTP 的实时通信
(通常用于比 REST 的不同目的) 的另一种可能是与更高级别的框架的实时和一对多通信,如 ASP.NET SignalR 和协议,例如 Websocket 。
如图 4-17 所示,实时 HTTP 通信意味着你可以将内容推送到连接的客户端,当数据变为可用,而不必等待客户端请求新数据的服务器的服务器代码。
图 4-17 。 一对一实时的异步消息通信
由于实时是通信,客户端应用程序几乎立刻显示所做的更改。 这通常由如 WebSockets,使用多个 Websocket 连接 (每个客户端一个) 协议进行处理。 一个典型示例是当服务同时通信中的许多客户端 web 应用到体育游戏的分数的更改时。
以前 下一步
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论