- 4.1 The NumPy ndarray 多维数组对象
- 4.2 Universal Functions 通用函数
- 4.3 Array-Oriented Programming with Arrays 数组导向编程
- 5.1 Introduction to pandas Data Structures pandas 的数据结构
- 5.2 Essential Functionality 主要功能
- 5.3 Summarizing and Computing Descriptive Statistics 汇总和描述性统计
- 7.1 Handling Missing Data 处理缺失数据
- 7.2 Data Transformation 数据变换
- 7.3 String Manipulation 字符串处理
- 11.1 Date and Time Data Types and Tools 日期和时间数据类型及其工具
- 11.2 Time Series Basics 时间序列基础
- 11.3 Date Ranges, Frequencies, and Shifting 日期范围,频度,和位移
- 12.1 Categorical Data 类别数据
- 14.1 USA.gov Data from Bitly USA.gov 数据集
- 14.2 MovieLens 1M Dataset MovieLens 1M 数据集
- 14.3 US Baby Names 1880–2010 1880年至2010年美国婴儿姓名
14.2 MovieLens 1M Dataset MovieLens 1M 数据集
这个数据集是电影评分数据:包括电影评分,电影元数据(风格类型,年代)以及关于用户的人口统计学数据(年龄,邮编,性别,职业等)。
MovieLens 1M 数据集含有来自 6000 名用户对 4000 部电影的 100 万条评分数据。分为三个表:评分,用户信息,电影信息。这些数据都是 dat 文件格式,可以通过 pandas.read_table 将各个表分别读到一个 pandas DataFrame 对象中:
import pandas as pd
# Make display smaller pd.options.display.max_rows = 10
unames = ['user_id', 'gender', 'age', 'occupation', 'zip'] users = pd.read_table('../datasets/movielens/users.dat', sep='::', header=None, names=unames)
因为 sep='::'有点像是正则表达式,于是有了上面的错误。在这个 帖子 找到了解决方法,设置 engine 为 python 即可。
Looks like on Python 2.7 Pandas just doesn't handle separators that look regexish. The initial "error" can be worked around by adding engine='python' as a named parameter in the call, as suggested in the warning.
users = pd.read_table('../datasets/movielens/users.dat', sep='::', header=None, names=unames, engine='python')
rnames = ['user_id', 'movie_id', 'rating', 'timestamp'] ratings = pd.read_table('../datasets/movielens/ratings.dat', sep='::', header=None, names=rnames, engine='python')
mnames = ['movie_id', 'title', 'genres'] movies = pd.read_table('../datasets/movielens/movies.dat', sep='::', header=None, names=mnames, engine='python')
加载前几行验证一下数据加载工作是否顺利
users[:5]
user_id | gender | age | occupation | zip | |
---|---|---|---|---|---|
0 | 1 | F | 1 | 10 | 48067 |
1 | 2 | M | 56 | 16 | 70072 |
2 | 3 | M | 25 | 15 | 55117 |
3 | 4 | M | 45 | 7 | 02460 |
4 | 5 | M | 25 | 20 | 55455 |
ratings[:5]
user_id | movie_id | rating | timestamp | |
---|---|---|---|---|
0 | 1 | 1193 | 5 | 978300760 |
1 | 1 | 661 | 3 | 978302109 |
2 | 1 | 914 | 3 | 978301968 |
3 | 1 | 3408 | 4 | 978300275 |
4 | 1 | 2355 | 5 | 978824291 |
movies[:5]
movie_id | title | genres | |
---|---|---|---|
0 | 1 | Toy Story (1995) | Animation|Children's|Comedy |
1 | 2 | Jumanji (1995) | Adventure|Children's|Fantasy |
2 | 3 | Grumpier Old Men (1995) | Comedy|Romance |
3 | 4 | Waiting to Exhale (1995) | Comedy|Drama |
4 | 5 | Father of the Bride Part II (1995) | Comedy |
注意,年龄和职业是以编码形式给出的,它们的具体含义请参考改数据集的 REAMDE 文件。分析散布在三个表中的数据不是一件轻松的事情。假设我们想要根据性别和年龄来计算某部电影的平均得分,如果将所有的数据都合并到一个表中的话,问题就简单多了。我们先用 pandas 的 merge 函数将 ratings 和 users 合并到一起,然后再将 movies 也合并进去。pandas 会根据列名的重叠情况推断出哪些列是合并(或连接)键:
data = pd.merge(pd.merge(ratings, users), movies)
data.head()
user_id | movie_id | rating | timestamp | gender | age | occupation | zip | title | genres | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1193 | 5 | 978300760 | F | 1 | 10 | 48067 | One Flew Over the Cuckoo's Nest (1975) | Drama |
1 | 2 | 1193 | 5 | 978298413 | M | 56 | 16 | 70072 | One Flew Over the Cuckoo's Nest (1975) | Drama |
2 | 12 | 1193 | 4 | 978220179 | M | 25 | 12 | 32793 | One Flew Over the Cuckoo's Nest (1975) | Drama |
3 | 15 | 1193 | 4 | 978199279 | M | 25 | 7 | 22903 | One Flew Over the Cuckoo's Nest (1975) | Drama |
4 | 17 | 1193 | 5 | 978158471 | M | 50 | 1 | 95350 | One Flew Over the Cuckoo's Nest (1975) | Drama |
data.iloc[0]
user_id 1 movie_id 1193 rating 5 timestamp 978300760 gender F age 1 occupation 10 zip 48067 title One Flew Over the Cuckoo's Nest (1975) genres Drama Name: 0, dtype: object
现在,只要稍微熟悉一下 pandas,就能轻松地根据任意个用户或电影属性对评分数据进行聚合操作了。为了按性别计算每部电影的平均得分,我们可以使用 pivot_table 方法:
mean_ratings = data.pivot_table('rating', index='title', columns='gender', aggfunc='mean')
mean_ratings[:5]
gender | F | M |
---|---|---|
title | ||
$1,000,000 Duck (1971) | 3.375000 | 2.761905 |
'Night Mother (1986) | 3.388889 | 3.352941 |
'Til There Was You (1997) | 2.675676 | 2.733333 |
'burbs, The (1989) | 2.793478 | 2.962085 |
...And Justice for All (1979) | 3.828571 | 3.689024 |
该操作产生了另一个 DataFrame,其内容为电影平均得分,行标为电影名称,列表为性别。现在,我们打算过滤掉评分数据不够 250 条的电影(这个数字可以自己设定)。为了达到这个目的,我们先对 title 进行分组,然后利用 size()得到一个含有各电影分组大小的 Series 对象:
ratings_by_title = data.groupby('title').size()
ratings_by_title[:10]
title $1,000,000 Duck (1971) 37 'Night Mother (1986) 70 'Til There Was You (1997) 52 'burbs, The (1989) 303 ...And Justice for All (1979) 199 1-900 (1994) 2 10 Things I Hate About You (1999) 700 101 Dalmatians (1961) 565 101 Dalmatians (1996) 364 12 Angry Men (1957) 616 dtype: int64
active_titles = ratings_by_title.index[ratings_by_title >= 250]
print(active_titles)
Index([''burbs, The (1989)', '10 Things I Hate About You (1999)', '101 Dalmatians (1961)', '101 Dalmatians (1996)', '12 Angry Men (1957)', '13th Warrior, The (1999)', '2 Days in the Valley (1996)', '20,000 Leagues Under the Sea (1954)', '2001: A Space Odyssey (1968)', '2010 (1984)', ... 'X-Men (2000)', 'Year of Living Dangerously (1982)', 'Yellow Submarine (1968)', 'You've Got Mail (1998)', 'Young Frankenstein (1974)', 'Young Guns (1988)', 'Young Guns II (1990)', 'Young Sherlock Holmes (1985)', 'Zero Effect (1998)', 'eXistenZ (1999)'], dtype='object', name='title', length=1216)
上面的 active_titles 中的电影,都是评论是大于 250 条以上的。我们可以用这些标题作为索引,从 mean_ratings 中选出这些评论大于 250 条的电影:
mean_ratings = mean_ratings.loc[active_titles] mean_ratings
gender | F | M |
---|---|---|
title | ||
'burbs, The (1989) | 2.793478 | 2.962085 |
10 Things I Hate About You (1999) | 3.646552 | 3.311966 |
101 Dalmatians (1961) | 3.791444 | 3.500000 |
101 Dalmatians (1996) | 3.240000 | 2.911215 |
12 Angry Men (1957) | 4.184397 | 4.328421 |
... | ... | ... |
Young Guns (1988) | 3.371795 | 3.425620 |
Young Guns II (1990) | 2.934783 | 2.904025 |
Young Sherlock Holmes (1985) | 3.514706 | 3.363344 |
Zero Effect (1998) | 3.864407 | 3.723140 |
eXistenZ (1999) | 3.098592 | 3.289086 |
1216 rows × 2 columns
想要查看女性观众喜欢的电影,可以按 F 列进行降序操作:
top_female_ratings = mean_ratings.sort_values(by='F', ascending=False) top_female_ratings[:10]
gender | F | M |
---|---|---|
title | ||
Close Shave, A (1995) | 4.644444 | 4.473795 |
Wrong Trousers, The (1993) | 4.588235 | 4.478261 |
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) | 4.572650 | 4.464589 |
Wallace & Gromit: The Best of Aardman Animation (1996) | 4.563107 | 4.385075 |
Schindler's List (1993) | 4.562602 | 4.491415 |
Shawshank Redemption, The (1994) | 4.539075 | 4.560625 |
Grand Day Out, A (1992) | 4.537879 | 4.293255 |
To Kill a Mockingbird (1962) | 4.536667 | 4.372611 |
Creature Comforts (1990) | 4.513889 | 4.272277 |
Usual Suspects, The (1995) | 4.513317 | 4.518248 |
1 Measuring Rating Disagreement(计算评分分歧)
假设我们想要找出男性和女性观众分歧最大的电影。一个办法是给 mean_ratings 加上一个用于存放平均得分之差的列,并对其进行排序:
mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F']
按‘diff’排序即可得到分歧最大且女性观众更喜欢的电影:
sorted_by_diff = mean_ratings.sort_values(by='diff') sorted_by_diff[:15]
gender | F | M | diff |
---|---|---|---|
title | |||
Dirty Dancing (1987) | 3.790378 | 2.959596 | -0.830782 |
Jumpin' Jack Flash (1986) | 3.254717 | 2.578358 | -0.676359 |
Grease (1978) | 3.975265 | 3.367041 | -0.608224 |
Little Women (1994) | 3.870588 | 3.321739 | -0.548849 |
Steel Magnolias (1989) | 3.901734 | 3.365957 | -0.535777 |
... | ... | ... | ... |
French Kiss (1995) | 3.535714 | 3.056962 | -0.478752 |
Little Shop of Horrors, The (1960) | 3.650000 | 3.179688 | -0.470312 |
Guys and Dolls (1955) | 4.051724 | 3.583333 | -0.468391 |
Mary Poppins (1964) | 4.197740 | 3.730594 | -0.467147 |
Patch Adams (1998) | 3.473282 | 3.008746 | -0.464536 |
15 rows × 3 columns
对行进行反序操作,并取出前 15 行,得到的则是男性更喜欢,而女性评价较低的电影:
# Reverse order of rows, take first 10 rows sorted_by_diff[::-1][:10]
gender | F | M | diff |
---|---|---|---|
title | |||
Good, The Bad and The Ugly, The (1966) | 3.494949 | 4.221300 | 0.726351 |
Kentucky Fried Movie, The (1977) | 2.878788 | 3.555147 | 0.676359 |
Dumb & Dumber (1994) | 2.697987 | 3.336595 | 0.638608 |
Longest Day, The (1962) | 3.411765 | 4.031447 | 0.619682 |
Cable Guy, The (1996) | 2.250000 | 2.863787 | 0.613787 |
Evil Dead II (Dead By Dawn) (1987) | 3.297297 | 3.909283 | 0.611985 |
Hidden, The (1987) | 3.137931 | 3.745098 | 0.607167 |
Rocky III (1982) | 2.361702 | 2.943503 | 0.581801 |
Caddyshack (1980) | 3.396135 | 3.969737 | 0.573602 |
For a Few Dollars More (1965) | 3.409091 | 3.953795 | 0.544704 |
如果只是想要找出分歧最大的电影(不考虑性别因素),则可以计算得分数据的方差或标准差:
# 根据电影名称分组的得分数据的标准差 rating_std_by_title = data.groupby('title')['rating'].std()
# 根据 active_titles 进行过滤 rating_std_by_title = rating_std_by_title.loc[active_titles]
# Order Series by value in descending order rating_std_by_title.sort_values(ascending=False)[:10]
title Dumb & Dumber (1994) 1.321333 Blair Witch Project, The (1999) 1.316368 Natural Born Killers (1994) 1.307198 Tank Girl (1995) 1.277695 Rocky Horror Picture Show, The (1975) 1.260177 Eyes Wide Shut (1999) 1.259624 Evita (1996) 1.253631 Billy Madison (1995) 1.249970 Fear and Loathing in Las Vegas (1998) 1.246408 Bicentennial Man (1999) 1.245533 Name: rating, dtype: float64
这里我们注意到,电影分类是以竖线 |
分割的字符串形式给出的。如果想对不同的电影分类进行分析的话,就需要先将其转换成更有用的形式才行。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论