文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
1.算法过程
1)从N个样本数据中随机选取K个对象作为初始的聚类中心。
2)分别计算每个样本到各个聚类中心的距离,将对象分配到距离最近的聚类中。
3)所有对象分配完成后,重新计算K个聚类的中心。
4)与前一次计算得到的K个聚类中心比较,如果聚类中心发生变化,转过程2),否则转过程5)。
5)当质心不发生变化时停止并输出聚类结果。
聚类的结果可能依赖于初始聚类中心的随机选择,可能使得结果严重偏离全局最优分类。实践中,为了得到较好的结果,通常选择不同的初始聚类中心,多次运行K-Means算法。在所有对象分配完成后,重新计算K个聚类的中心时,对于连续数据,聚类中心取该簇的均值,但是当样本的某些属性是分类变量时,均值可能无定义,可以使用K-众数方法。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论