- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Finishing up
We can easily add a text tool that uses prompt
to ask the user which string it should draw.
tools.Text = function(event, cx) { var text = prompt("Text:", ""); if (text) { var pos = relativePos(event, cx.canvas); cx.font = Math.max(7, cx.lineWidth) + "px sans-serif"; cx.fillText(text, pos.x, pos.y); } };
You could add extra fields for the font size and the font, but for simplicity’s sake, we always use a sans-serif font and base the font size on the current brush size. The minimum size is 7 pixels because text smaller than that is unreadable.
Another indispensable tool for drawing amateurish computer graphics is the spray paint tool. This one draws dots in random locations under the brush as long as the mouse is held down, creating denser or less dense speckling based on how fast or slow the mouse moves.
tools.Spray = function(event, cx) { var radius = cx.lineWidth / 2; var area = radius * radius * Math.PI; var dotsPerTick = Math.ceil(area / 30); var currentPos = relativePos(event, cx.canvas); var spray = setInterval(function() { for (var i = 0; i < dotsPerTick; i++) { var offset = randomPointInRadius(radius); cx.fillRect(currentPos.x + offset.x, currentPos.y + offset.y, 1, 1); } }, 25); trackDrag(function(event) { currentPos = relativePos(event, cx.canvas); }, function() { clearInterval(spray); }); };
The spray tool uses setInterval
to spit out colored dots every 25 milliseconds as long as the mouse button is held down. The trackDrag
function is used to keep currentPos
pointing at the current mouse position and to turn off the interval when the mouse button is released.
To determine how many dots to draw every time the interval fires, the function computes the area of the current brush and divides that by 30. To find a random position under the brush, the randomPointInRadius
function is used.
function randomPointInRadius(radius) { for (;;) { var x = Math.random() * 2 - 1; var y = Math.random() * 2 - 1; if (x * x + y * y <= 1) return {x: x * radius, y: y * radius}; } }
This function generates points in the square between (-1,-1) and (1,1). Using the Pythagorean theorem, it tests whether the generated point lies within a circle of radius 1. As soon as the function finds such a point, it returns the point multiplied by the radius
argument.
The loop is necessary for a uniform distribution of dots. The straightforward way of generating a random point within a circle would be to use a random angle and distance and call Math.sin
and Math.cos
to create the corresponding point. But with that method, the dots are more likely to appear near the center of the circle. There are other ways around that, but they’re more complicated than the previous loop.
We now have a functioning paint program.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论