- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
The lycanthrope’s log
So Jacques starts up his JavaScript interpreter and sets up the environment he needs to keep his journal.
var journal = []; function addEntry(events, didITurnIntoASquirrel) { journal.push({ events: events, squirrel: didITurnIntoASquirrel }); }
And then, every evening at ten—or sometimes the next morning, after climbing down from the top shelf of his bookcase—he records the day.
addEntry(["work", "touched tree", "pizza", "running", "television"], false); addEntry(["work", "ice cream", "cauliflower", "lasagna", "touched tree", "brushed teeth"], false); addEntry(["weekend", "cycling", "break", "peanuts", "beer"], true);
Once he has enough data points, he intends to compute the correlation between his squirrelification and each of the day’s events and ideally learn something useful from those correlations.
Correlation is a measure of dependence between variables (“variables” in the statistical sense, not the JavaScript sense). It is usually expressed as a coefficient that ranges from -1 to 1. Zero correlation means the variables are not related, whereas a correlation of one indicates that the two are perfectly related—if you know one, you also know the other. Negative one also means that the variables are perfectly related but that they are opposites—when one is true, the other is false.
For binary (Boolean) variables, the phi coefficient (ϕ) provides a good measure of correlation and is relatively easy to compute. To compute ϕ, we need a table n that contains the number of times the various combinations of the two variables were observed. For example, we could take the event of eating pizza and put that in a table like this:
ϕ can be computed using the following formula, where n refers to the table:
ϕ = | n11n00 - n10n01 √ n1•n0•n•1n•0 |
The notation n01 indicates the number of measurements where the first variable (squirrelness) is false (0) and the second variable (pizza) is true (1). In this example, n01 is 9.
The value n1• refers to the sum of all measurements where the first variable is true, which is 5 in the example table. Likewise, n•0 refers to the sum of the measurements where the second variable is false.
So for the pizza table, the part above the division line (the dividend) would be 1×76 - 4×9 = 40, and the part below it (the divisor) would be the square root of 5×85×10×80, or √340000. This comes out to ϕ ≈ 0.069, which is tiny. Eating pizza does not appear to have influence on the transformations.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论