- 写在前面的话
- 引言
- 第 1 章 对象入门
- 第 2 章 一切都是对象
- 第 3 章 控制程序流程
- 第 4 章 初始化和清除
- 第 5 章 隐藏实施过程
- 第 6 章 类再生
- 第 7 章 多形性
- 第 8 章 对象的容纳
- 第 9 章 违例差错控制
- 第 10 章 Java IO 系统
- 第 11 章 运行期类型鉴定
- 第 12 章 传递和返回对象
- 第 十三 章 创建窗口和程序片
- 第 14 章 多线程
- 第 15 章 网络编程
- 第 16 章 设计范式
- 第 17 章 项目
- 附录 A 使用非 JAVA 代码
- 附录 B 对比 C++和 Java
- 附录 C Java 编程规则
- 附录 D 性能
- 附录 E 关于垃圾收集的一些话
- 附录 F 推荐读物
4.4.2 构建器初始化
可考虑用构建器执行初始化进程。这样便可在编程时获得更大的灵活程度,因为我们可以在运行期调用方法和采取行动,从而“现场”决定初始化值。但要注意这样一件事情:不可妨碍自动初始化的进行,它在构建器进入之前就会发生。因此,假如使用下述代码:
class Counter {
int i;
Counter() { i = 7; }
// . . .
那么 i 首先会初始化成零,然后变成 7。对于所有基本类型以及对象句柄,这种情况都是成立的,其中包括在定义时已进行了明确初始化的那些一些。考虑到这个原因,编译器不会试着强迫我们在构建器任何特定的场所对元素进行初始化,或者在它们使用之前——初始化早已得到了保证(注释⑤)。
⑤:相反,C++有自己的“构建器初始模块列表”,能在进入构建器主体之前进行初始化,而且它对于对象来说是强制进行的。参见《Thinking in C++》。
1. 初始化顺序
在一个类里,初始化的顺序是由变量在类内的定义顺序决定的。即使变量定义大量遍布于方法定义的中间,那些变量仍会在调用任何方法之前得到初始化——甚至在构建器调用之前。例如:
//: OrderOfInitialization.java // Demonstrates initialization order. // When the constructor is called, to create a // Tag object, you'll see a message: class Tag { Tag(int marker) { System.out.println("Tag(" + marker + ")"); } } class Card { Tag t1 = new Tag(1); // Before constructor Card() { // Indicate we're in the constructor: System.out.println("Card()"); t3 = new Tag(33); // Re-initialize t3 } Tag t2 = new Tag(2); // After constructor void f() { System.out.println("f()"); } Tag t3 = new Tag(3); // At end } public class OrderOfInitialization { public static void main(String[] args) { Card t = new Card(); t.f(); // Shows that construction is done } } ///:~
在 Card 中,Tag 对象的定义故意到处散布,以证明它们全都会在构建器进入或者发生其他任何事情之前得到初始化。除此之外,t3 在构建器内部得到了重新初始化。它的输入结果如下:
Tag(1) Tag(2) Tag(3) Card() Tag(33) f()
因此,t3 句柄会被初始化两次,一次在构建器调用前,一次在调用期间(第一个对象会被丢弃,所以它后来可被当作垃圾收掉)。从表面看,这样做似乎效率低下,但它能保证正确的初始化——若定义了一个过载的构建器,它没有初始化 t3;同时在 t3 的定义里并没有规定“默认”的初始化方式,那么会产生什么后果呢?
2. 静态数据的初始化
若数据是静态的(static),那么同样的事情就会发生;如果它属于一个基本类型(主类型),而且未对其初始化,就会自动获得自己的标准基本类型初始值;如果它是指向一个对象的句柄,那么除非新建一个对象,并将句柄同它连接起来,否则就会得到一个空值(NULL)。
如果想在定义的同时进行初始化,采取的方法与非静态值表面看起来是相同的。但由于 static 值只有一个存储区域,所以无论创建多少个对象,都必然会遇到何时对那个存储区域进行初始化的问题。下面这个例子可将这个问题说更清楚一些:
//: StaticInitialization.java // Specifying initial values in a // class definition. class Bowl { Bowl(int marker) { System.out.println("Bowl(" + marker + ")"); } void f(int marker) { System.out.println("f(" + marker + ")"); } } class Table { static Bowl b1 = new Bowl(1); Table() { System.out.println("Table()"); b2.f(1); } void f2(int marker) { System.out.println("f2(" + marker + ")"); } static Bowl b2 = new Bowl(2); } class Cupboard { Bowl b3 = new Bowl(3); static Bowl b4 = new Bowl(4); Cupboard() { System.out.println("Cupboard()"); b4.f(2); } void f3(int marker) { System.out.println("f3(" + marker + ")"); } static Bowl b5 = new Bowl(5); } public class StaticInitialization { public static void main(String[] args) { System.out.println( "Creating new Cupboard() in main"); new Cupboard(); System.out.println( "Creating new Cupboard() in main"); new Cupboard(); t2.f2(1); t3.f3(1); } static Table t2 = new Table(); static Cupboard t3 = new Cupboard(); } ///:~
Bowl 允许我们检查一个类的创建过程,而 Table 和 Cupboard 能创建散布于类定义中的 Bowl 的 static 成员。注意在 static 定义之前,Cupboard 先创建了一个非 static 的 Bowl b3。它的输出结果如下:
Bowl(1) Bowl(2) Table() f(1) Bowl(4) Bowl(5) Bowl(3) Cupboard() f(2) Creating new Cupboard() in main Bowl(3) Cupboard() f(2) Creating new Cupboard() in main Bowl(3) Cupboard() f(2) f2(1) f3(1)
static 初始化只有在必要的时候才会进行。如果不创建一个 Table 对象,而且永远都不引用 Table.b1 或 Table.b2,那么 static Bowl b1 和 b2 永远都不会创建。然而,只有在创建了第一个 Table 对象之后(或者发生了第一次 static 访问),它们才会创建。在那以后,static 对象不会重新初始化。
初始化的顺序是首先 static(如果它们尚未由前一次对象创建过程初始化),接着是非 static 对象。大家可从输出结果中找到相应的证据。
在这里有必要总结一下对象的创建过程。请考虑一个名为 Dog 的类:
(1) 类型为 Dog 的一个对象首次创建时,或者 Dog 类的 static 方法/static 字段首次访问时,Java 解释器必须找到 Dog.class(在事先设好的类路径里搜索)。
(2) 找到 Dog.class 后(它会创建一个 Class 对象,这将在后面学到),它的所有 static 初始化模块都会运行。因此,static 初始化仅发生一次——在 Class 对象首次载入的时候。
(3) 创建一个 new Dog() 时,Dog 对象的构建进程首先会在内存堆(Heap)里为一个 Dog 对象分配足够多的存储空间。
(4) 这种存储空间会清为零,将 Dog 中的所有基本类型设为它们的默认值(零用于数字,以及 boolean 和 char 的等价设定)。
(5) 进行字段定义时发生的所有初始化都会执行。
(6) 执行构建器。正如第 6 章将要讲到的那样,这实际可能要求进行相当多的操作,特别是在涉及继承的时候。
3. 明确进行的静态初始化
Java 允许我们将其他 static 初始化工作划分到类内一个特殊的“static 构建从句”(有时也叫作“静态块”)里。它看起来象下面这个样子:
class Spoon { static int i; static { i = 47; } // . . .
尽管看起来象个方法,但它实际只是一个 static 关键字,后面跟随一个方法主体。与其他 static 初始化一样,这段代码仅执行一次——首次生成那个类的一个对象时,或者首次访问属于那个类的一个 static 成员时(即便从未生成过那个类的对象)。例如:
//: ExplicitStatic.java // Explicit static initialization // with the "static" clause. class Cup { Cup(int marker) { System.out.println("Cup(" + marker + ")"); } void f(int marker) { System.out.println("f(" + marker + ")"); } } class Cups { static Cup c1; static Cup c2; static { c1 = new Cup(1); c2 = new Cup(2); } Cups() { System.out.println("Cups()"); } } public class ExplicitStatic { public static void main(String[] args) { System.out.println("Inside main()"); Cups.c1.f(99); // (1) } static Cups x = new Cups(); // (2) static Cups y = new Cups(); // (2) } ///:~
在标记为(1) 的行内访问 static 对象 c1 的时候,或在行(1) 标记为注释,同时(2) 行不标记成注释的时候,用于 Cups 的 static 初始化模块就会运行。若(1) 和(2) 都被标记成注释,则用于 Cups 的 static 初始化进程永远不会发生。
4. 非静态实例的初始化
针对每个对象的非静态变量的初始化,Java 1.1 提供了一种类似的语法格式。下面是一个例子:
//: Mugs.java // Java 1.1 "Instance Initialization" class Mug { Mug(int marker) { System.out.println("Mug(" + marker + ")"); } void f(int marker) { System.out.println("f(" + marker + ")"); } } public class Mugs { Mug c1; Mug c2; { c1 = new Mug(1); c2 = new Mug(2); System.out.println("c1 & c2 initialized"); } Mugs() { System.out.println("Mugs()"); } public static void main(String[] args) { System.out.println("Inside main()"); Mugs x = new Mugs(); } } ///:~
大家可看到实例初始化从句:
{ c1 = new Mug(1); c2 = new Mug(2); System.out.println("c1 & c2 initialized"); }
它看起来与静态初始化从句极其相似,只是 static 关键字从里面消失了。为支持对“匿名内部类”的初始化(参见第 7 章),必须采用这一语法格式。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论