返回介绍

Statistical algorithms

发布于 2025-02-25 23:44:08 字数 1300 浏览 0 评论 0 收藏 0

  • Numbers as leaky abstractions
  • Don’t just use black boxes
    • Make an effort to understand what each algorithm you call is doing
    • At minimum, can you explain what the algorithm is doing in plain English?
    • Can you implement a simple version from the ground up?
  • Categories of algorithms
    • Big matrix manipulations (matrix decomposition is key)
    • Continuous optimization - order 0, 1, 2
    • EM algorithm has wide applicability in both frequentist and Bayesian domains
    • Monte Carlo methods, MCMC and simulations
  • Making code fast
    • Make it run, make it right, make it fast
    • Python has amazing profiling tools - use them
    • For profiling C code, try gperftools
    • Compilation: Try numba or Cython in preference to writing raw C/C++
    • Parallel programming
      • Python GIL
      • Use Queue from threading or multiprocessing to build a pipeline
      • Skip OpenMP (except within Cython) and MPI
  • Big data

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文