- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
C++ version
Using C++ is almost the same as using C. Just add an extern C statement and use an appropriate C++ compiler.
%%file pdist_cpp.cpp #include <cmath> extern "C" // Variable length arrays are OK for C99 but not legal in C++ // void pdist_cpp(int n, int p, double xs[n*p], double D[n*n]) { void pdist_cpp(int n, int p, double *xs, double *D) { for (int i=0; i<n; i++) { for (int j=0; j<n; j++) { double s = 0.0; for (int k=0; k<p; k++) { double tmp = xs[i*p+k] - xs[j*p+k]; s += tmp*tmp; } D[i*n+j] = sqrt(s); } } }
Writing pdist_cpp.cpp
# Compile to a shared library ! g++ -O3 -bundle -undefined dynamic_lookup pdist_cpp.cpp -o pdist_cpp.so # Linux: # ! g++ -O3 -fPIC -shared pdist_cpp.cpp -o pdist_cpp.so
from ctypes import CDLL, c_int, c_void_p def pdist_cpp(xs): # Use ctypes to load the library lib = CDLL('./pdist_cpp.so') # We need to give the argument adn return types explicitly lib.pdist_cpp.argtypes = [c_int, c_int, np.ctypeslib.ndpointer(dtype = np.float), np.ctypeslib.ndpointer(dtype = np.float)] lib.pdist_cpp.restype = c_void_p n, p = xs.shape D = np.empty((n, n), np.float) lib.pdist_cpp(n, p, xs, D) return D
print pdist_cpp(A) %timeit pdist_cpp(xs)
[[ 0. 5.] [ 5. 0.]] 100 loops, best of 3: 7.56 ms per loop
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论