返回介绍

solution / 1200-1299 / 1219.Path with Maximum Gold / README_EN

发布于 2024-06-17 01:03:21 字数 6646 浏览 0 评论 0 收藏 0

1219. Path with Maximum Gold

中文文档

Description

In a gold mine grid of size m x n, each cell in this mine has an integer representing the amount of gold in that cell, 0 if it is empty.

Return the maximum amount of gold you can collect under the conditions:

  • Every time you are located in a cell you will collect all the gold in that cell.
  • From your position, you can walk one step to the left, right, up, or down.
  • You can't visit the same cell more than once.
  • Never visit a cell with 0 gold.
  • You can start and stop collecting gold from any position in the grid that has some gold.

 

Example 1:

Input: grid = [[0,6,0],[5,8,7],[0,9,0]]
Output: 24
Explanation:
[[0,6,0],
 [5,8,7],
 [0,9,0]]
Path to get the maximum gold, 9 -> 8 -> 7.

Example 2:

Input: grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
Output: 28
Explanation:
[[1,0,7],
 [2,0,6],
 [3,4,5],
 [0,3,0],
 [9,0,20]]
Path to get the maximum gold, 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 15
  • 0 <= grid[i][j] <= 100
  • There are at most 25 cells containing gold.

Solutions

Solution 1: DFS

We can enumerate each cell as the starting point, and then start a depth-first search from the starting point. During the search process, whenever we encounter a non-zero cell, we turn it into zero and continue the search. When we can no longer continue the search, we calculate the total amount of gold in the current path, then turn the current cell back into a non-zero cell, thus performing backtracking.

The time complexity is $O(m \times n \times 3^k)$, where $k$ is the maximum length of each path. Since each cell can only be visited once at most, the time complexity will not exceed $O(m \times n \times 3^k)$. The space complexity is $O(m \times n)$.

class Solution:
  def getMaximumGold(self, grid: List[List[int]]) -> int:
    def dfs(i: int, j: int) -> int:
      if not (0 <= i < m and 0 <= j < n and grid[i][j]):
        return 0
      v = grid[i][j]
      grid[i][j] = 0
      ans = max(dfs(i + a, j + b) for a, b in pairwise(dirs)) + v
      grid[i][j] = v
      return ans

    m, n = len(grid), len(grid[0])
    dirs = (-1, 0, 1, 0, -1)
    return max(dfs(i, j) for i in range(m) for j in range(n))
class Solution {
  private final int[] dirs = {-1, 0, 1, 0, -1};
  private int[][] grid;
  private int m;
  private int n;

  public int getMaximumGold(int[][] grid) {
    m = grid.length;
    n = grid[0].length;
    this.grid = grid;
    int ans = 0;
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        ans = Math.max(ans, dfs(i, j));
      }
    }
    return ans;
  }

  private int dfs(int i, int j) {
    if (i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == 0) {
      return 0;
    }
    int v = grid[i][j];
    grid[i][j] = 0;
    int ans = 0;
    for (int k = 0; k < 4; ++k) {
      ans = Math.max(ans, v + dfs(i + dirs[k], j + dirs[k + 1]));
    }
    grid[i][j] = v;
    return ans;
  }
}
class Solution {
public:
  int getMaximumGold(vector<vector<int>>& grid) {
    int m = grid.size(), n = grid[0].size();
    function<int(int, int)> dfs = [&](int i, int j) {
      if (i < 0 || i >= m || j < 0 || j >= n || !grid[i][j]) {
        return 0;
      }
      int v = grid[i][j];
      grid[i][j] = 0;
      int ans = v + max({dfs(i - 1, j), dfs(i + 1, j), dfs(i, j - 1), dfs(i, j + 1)});
      grid[i][j] = v;
      return ans;
    };
    int ans = 0;
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        ans = max(ans, dfs(i, j));
      }
    }
    return ans;
  }
};
func getMaximumGold(grid [][]int) (ans int) {
  m, n := len(grid), len(grid[0])
  var dfs func(i, j int) int
  dfs = func(i, j int) int {
    if i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == 0 {
      return 0
    }
    v := grid[i][j]
    grid[i][j] = 0
    ans := 0
    dirs := []int{-1, 0, 1, 0, -1}
    for k := 0; k < 4; k++ {
      ans = max(ans, v+dfs(i+dirs[k], j+dirs[k+1]))
    }
    grid[i][j] = v
    return ans
  }
  for i := 0; i < m; i++ {
    for j := 0; j < n; j++ {
      ans = max(ans, dfs(i, j))
    }
  }
  return
}
function getMaximumGold(grid: number[][]): number {
  const m = grid.length;
  const n = grid[0].length;
  const dfs = (i: number, j: number): number => {
    if (i < 0 || i >= m || j < 0 || j >= n || !grid[i][j]) {
      return 0;
    }
    const v = grid[i][j];
    grid[i][j] = 0;
    let ans = v + Math.max(dfs(i - 1, j), dfs(i + 1, j), dfs(i, j - 1), dfs(i, j + 1));
    grid[i][j] = v;
    return ans;
  };
  let ans = 0;
  for (let i = 0; i < m; i++) {
    for (let j = 0; j < n; j++) {
      ans = Math.max(ans, dfs(i, j));
    }
  }
  return ans;
}
/**
 * @param {number[][]} grid
 * @return {number}
 */
var getMaximumGold = function (grid) {
  const m = grid.length;
  const n = grid[0].length;
  const dfs = (i, j) => {
    if (i < 0 || i >= m || j < 0 || j >= n || !grid[i][j]) {
      return 0;
    }
    const v = grid[i][j];
    grid[i][j] = 0;
    let ans = v + Math.max(dfs(i - 1, j), dfs(i + 1, j), dfs(i, j - 1), dfs(i, j + 1));
    grid[i][j] = v;
    return ans;
  };
  let ans = 0;
  for (let i = 0; i < m; i++) {
    for (let j = 0; j < n; j++) {
      ans = Math.max(ans, dfs(i, j));
    }
  }
  return ans;
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文