返回介绍

5.3 关联规则

发布于 2024-01-28 21:41:24 字数 1050 浏览 0 评论 0 收藏 0

下面通过餐饮企业中的一个实际情景引出关联规则的概念。客户在餐厅点餐时,面对菜单中大量的菜品信息,往往无法迅速找到满意的菜品,既增加了点菜的时间,也降低了客户的就餐体验。实际上,菜品的合理搭配是有规律可循的:顾客的饮食习惯、菜品的荤素和口味,有些菜品之间是相互关联的,而有些菜品之间是对立或竞争关系(负关联),这些规律都隐藏在大量的历史菜单数据中,如果能够通过数据挖掘发现客户点餐的规则,就可以快速识别客户的口味,当他下了某个菜品的订单时推荐相关联的菜品,引导客户消费,提高顾客的就餐体验和餐饮企业的业绩水平。

关联规则分析也成为购物篮分析,最早是为了发现超市销售数据库中不同的商品之间的关联关系。例如,一个超市的经理想要更多地了解顾客的购物习惯,比如“哪组商品可能会在一次购物中同时购买?”或者“某顾客购买了个人电脑,那该顾客三个月后购买数码相机的概率有多大?”他可能会发现如果购买了面包的顾客同时非常有可能会购买牛奶,这就导出了一条关联规则“面包=>牛奶”,其中面包称为规则的前项,而牛奶称为后项。通过对面包降低售价进行促销,而适当提高牛奶的售价,关联销售出的牛奶就有可能增加超市整体的利润。

关联规则分析是数据挖掘中最活跃的研究方法之一,目的是在一个数据集中找出各项之间的关联关系,而这种关系并没有在数据中直接表示出来。

5.3.1 常用关联规则算法

常用关联算法如表5-17所示。

表5-17 常用关联规则算法

本节将详细介绍Apriori算法。

5.3.2 Apriori算法

以超市销售数据为例,提取关联规则的最大困难在于当存在很多商品时,可能的商品的组合(规则的前项与后项)的数目会达到一种令人望而却步的程度。因而各种关联规则分析的算法从不同方面入手,以减小可能的搜索空间的大小以及减小扫描数据的次数。Apriori[12]算法是最经典的挖掘频繁项集的算法,第一次实现了在大数据集上可行的关联规则提取,其核心思想是通过连接产生候选项与其支持度,然后通过剪枝生成频繁项集。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文