返回介绍

solution / 1900-1999 / 1994.The Number of Good Subsets / README_EN

发布于 2024-06-17 01:03:12 字数 6538 浏览 0 评论 0 收藏 0

1994. The Number of Good Subsets

中文文档

Description

You are given an integer array nums. We call a subset of nums good if its product can be represented as a product of one or more distinct prime numbers.

  • For example, if nums = [1, 2, 3, 4]:
    • [2, 3], [1, 2, 3], and [1, 3] are good subsets with products 6 = 2*3, 6 = 2*3, and 3 = 3 respectively.
    • [1, 4] and [4] are not good subsets with products 4 = 2*2 and 4 = 2*2 respectively.

Return _the number of different good subsets in _nums_ modulo _109 + 7.

A subset of nums is any array that can be obtained by deleting some (possibly none or all) elements from nums. Two subsets are different if and only if the chosen indices to delete are different.

 

Example 1:

Input: nums = [1,2,3,4]
Output: 6
Explanation: The good subsets are:
- [1,2]: product is 2, which is the product of distinct prime 2.
- [1,2,3]: product is 6, which is the product of distinct primes 2 and 3.
- [1,3]: product is 3, which is the product of distinct prime 3.
- [2]: product is 2, which is the product of distinct prime 2.
- [2,3]: product is 6, which is the product of distinct primes 2 and 3.
- [3]: product is 3, which is the product of distinct prime 3.

Example 2:

Input: nums = [4,2,3,15]
Output: 5
Explanation: The good subsets are:
- [2]: product is 2, which is the product of distinct prime 2.
- [2,3]: product is 6, which is the product of distinct primes 2 and 3.
- [2,15]: product is 30, which is the product of distinct primes 2, 3, and 5.
- [3]: product is 3, which is the product of distinct prime 3.
- [15]: product is 15, which is the product of distinct primes 3 and 5.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 30

Solutions

Solution 1

class Solution:
  def numberOfGoodSubsets(self, nums: List[int]) -> int:
    primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
    cnt = Counter(nums)
    mod = 10**9 + 7
    n = len(primes)
    f = [0] * (1 << n)
    f[0] = pow(2, cnt[1])
    for x in range(2, 31):
      if cnt[x] == 0 or x % 4 == 0 or x % 9 == 0 or x % 25 == 0:
        continue
      mask = 0
      for i, p in enumerate(primes):
        if x % p == 0:
          mask |= 1 << i
      for state in range((1 << n) - 1, 0, -1):
        if state & mask == mask:
          f[state] = (f[state] + cnt[x] * f[state ^ mask]) % mod
    return sum(f[i] for i in range(1, 1 << n)) % mod
class Solution {
  public int numberOfGoodSubsets(int[] nums) {
    int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
    int[] cnt = new int[31];
    for (int x : nums) {
      ++cnt[x];
    }
    final int mod = (int) 1e9 + 7;
    int n = primes.length;
    long[] f = new long[1 << n];
    f[0] = 1;
    for (int i = 0; i < cnt[1]; ++i) {
      f[0] = (f[0] * 2) % mod;
    }
    for (int x = 2; x < 31; ++x) {
      if (cnt[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) {
        continue;
      }
      int mask = 0;
      for (int i = 0; i < n; ++i) {
        if (x % primes[i] == 0) {
          mask |= 1 << i;
        }
      }
      for (int state = (1 << n) - 1; state > 0; --state) {
        if ((state & mask) == mask) {
          f[state] = (f[state] + cnt[x] * f[state ^ mask]) % mod;
        }
      }
    }
    long ans = 0;
    for (int i = 1; i < 1 << n; ++i) {
      ans = (ans + f[i]) % mod;
    }
    return (int) ans;
  }
}
class Solution {
public:
  int numberOfGoodSubsets(vector<int>& nums) {
    int primes[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
    int cnt[31]{};
    for (int& x : nums) {
      ++cnt[x];
    }
    int n = 10;
    const int mod = 1e9 + 7;
    vector<long long> f(1 << n);
    f[0] = 1;
    for (int i = 0; i < cnt[1]; ++i) {
      f[0] = f[0] * 2 % mod;
    }
    for (int x = 2; x < 31; ++x) {
      if (cnt[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) {
        continue;
      }
      int mask = 0;
      for (int i = 0; i < n; ++i) {
        if (x % primes[i] == 0) {
          mask |= 1 << i;
        }
      }
      for (int state = (1 << n) - 1; state; --state) {
        if ((state & mask) == mask) {
          f[state] = (f[state] + 1LL * cnt[x] * f[state ^ mask]) % mod;
        }
      }
    }
    long long ans = 0;
    for (int i = 1; i < 1 << n; ++i) {
      ans = (ans + f[i]) % mod;
    }
    return ans;
  }
};
func numberOfGoodSubsets(nums []int) (ans int) {
  primes := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
  cnt := [31]int{}
  for _, x := range nums {
    cnt[x]++
  }
  const mod int = 1e9 + 7
  n := 10
  f := make([]int, 1<<n)
  f[0] = 1
  for i := 0; i < cnt[1]; i++ {
    f[0] = f[0] * 2 % mod
  }
  for x := 2; x < 31; x++ {
    if cnt[x] == 0 || x%4 == 0 || x%9 == 0 || x%25 == 0 {
      continue
    }
    mask := 0
    for i, p := range primes {
      if x%p == 0 {
        mask |= 1 << i
      }
    }
    for state := 1<<n - 1; state > 0; state-- {
      if state&mask == mask {
        f[state] = (f[state] + f[state^mask]*cnt[x]) % mod
      }
    }
  }
  for i := 1; i < 1<<n; i++ {
    ans = (ans + f[i]) % mod
  }
  return
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文