返回介绍

H.3.2 Tight satisfaction without local variables

发布于 2020-09-09 22:56:16 字数 1253 浏览 1084 评论 0 收藏 0

Tight satisfaction is denoted by . For unclocked sequences without local variables, tight satisfaction is

defined as follows. w, x, y, z denote finite words over Σ.

? w b iff |w| = 1 and w0 b .

? w ( R ) iff w R .

? w ( R1 ##1 R2 ) iff there exist x, y such that w = xy and x R1 and y R2 .

? w ( R1 ##0 R2 ) iff there exist x, y, z such that w = xyz and |y| = 1, and xy R1 and yz R2 .

? w ( R1 or R2 ) iff either w R1 or w R2 .

? w ( R1 intersect R2 ) iff both w R1 and w R2 .

? w first_match ( R ) iff both

— w R and

— if there exist x, y such that w = xy and x R, then y is empty.

? w R [*0] iff |w| = 0.

? w R [*1:$] iff there exist words w1, w2,..., wj ( j > 1) such that w = w1w2...wj and for every i such that

1 < i < j, wi R .

If S is a clocked sequence, then w S iff w S’, where S’ is the unclocked sequence that results from S by

applying the rewrite rules.

An unclocked sequence R is non-degenerate iff there exists a non-empty finite word w over Σ such that

w R. A clocked sequence S is non-degenerate iff the unclocked sequence S’ that results from S by applying

the rewrite rules is non-degenerate.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文