第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
每日期权风险数据整理
histDayGreeksIVOpt50ETF(Date(2015,10,12)).head()
| | Call | Call-Put | Put |
| --- | -- |
| | close | iv | delta | theta | gamma | vega | rho | strike | spot | forward | close | iv | delta | theta | gamma | vega | rho |
| expDate | | | | | | | | | | | | | | | | | |
| 2015-10-28 | 0.4331 | 0.4790 | 0.9830 | -0.1615 | 0.1779 | 0.0208 | 0.0842 | 1.85 | 2.288 | 2.283 | 0.0015 | 0.4793 | -0.0170 | -0.1059 | 0.1783 | 0.0208 | -0.0019 |
| 2015-10-28 | 0.3821 | 0.4772 | 0.9692 | -0.2310 | 0.2949 | 0.0343 | 0.0850 | 1.90 | 2.288 | 2.283 | 0.0029 | 0.4765 | -0.0306 | -0.1725 | 0.2939 | 0.0341 | -0.0034 |
| 2015-10-28 | 0.3335 | 0.4485 | 0.9568 | -0.2740 | 0.4144 | 0.0453 | 0.0859 | 1.95 | 2.288 | 2.283 | 0.0040 | 0.4473 | -0.0428 | -0.2129 | 0.4124 | 0.0450 | -0.0048 |
| 2015-10-28 | 0.2874 | 0.4218 | 0.9381 | -0.3289 | 0.5861 | 0.0603 | 0.0862 | 2.00 | 2.288 | 2.283 | 0.0058 | 0.4220 | -0.0620 | -0.2690 | 0.5866 | 0.0604 | -0.0069 |
| 2015-10-28 | 0.2420 | 0.2613 | 0.9773 | -0.1349 | 0.4175 | 0.0266 | 0.0929 | 2.05 | 2.288 | 2.283 | 0.0077 | 0.3873 | -0.0849 | -0.3130 | 0.8130 | 0.0768 | -0.0094 |
期权的隐含波动率微笑
+ 下图中,竖直虚线表示当日的标的50ETF收盘价
+ 实际上计算PCIVD就是仅仅考虑竖直虚线附近的平值期权
+ 看跌看涨隐含波动率微笑曲线中间的 Gap 的变化,正是我们关注点
```py
histDayPlotSmileVolatilityOpt50ETF(Date(2015,10,12))
def histDayPCIVD50ETF(date):
## PCIVD: Put Call Implied Volatility Diff;
## 看跌看涨期权隐含波动率价差,选取平值附近的近月和次近月合约构建
## 看跌和看涨期权的隐含波动率指数,PCIVD即为两指数之差。
# Uqer 计算期权的风险数据
opt = histDayGreeksIVOpt50ETF(date)
# 下面展示波动率微笑
exp_dates = np.sort(opt.index.unique())[0:2]
pcivd = pd.DataFrame(0.0, index=map(Date.toDateTime, [date]), columns=['nearPCIVD','nextPCIVD'])
pcivd.index.name = 'date'
ivd = []
for epd in exp_dates:
opt_epd = opt[opt.index==epd]
opt_epd[('Call-Put', 'diffKF')] = np.abs(opt_epd[('Call-Put', 'strike')] - opt_epd[('Call-Put', 'spot')])
opt_epd = opt_epd.set_index(('Call-Put', 'strike'))
opt_epd.index.name = 'strike'
opt_epd = opt_epd.sort([('Call-Put', 'diffKF')]).head(2)
ivd_epd = opt_epd[('Put', 'iv')].mean() - opt_epd[('Call', 'iv')].mean()
ivd.append(ivd_epd)
pcivd.ix[Date.toDateTime(date)] = ivd
return pcivd
def histDayPCIVD50ETF_check(date):
## PCIVD: Put Call Implied Volatility Diff;
## 看跌看涨期权隐含波动率价差,选取平值附近的近月和次近月合约构建
## 看跌和看涨期权的隐含波动率指数,PCIVD即为两指数之差。
# Uqer 计算期权的风险数据
opt = histDayGreeksIVOpt50ETF(date)
# 下面展示波动率微笑
exp_dates = np.sort(opt.index.unique())[0:2]
pcivd = pd.DataFrame(0.0, index=map(Date.toDateTime, [date]), columns=['nearPCIVD', 'nearPutIV', 'nearCallIV','nextPCIVD', 'nextPutIV', 'nextCallIV'])
pcivd.index.name = 'date'
ivd = []
for epd in exp_dates:
opt_epd = opt[opt.index==epd]
opt_epd[('Call-Put', 'diffKF')] = np.abs(opt_epd[('Call-Put', 'strike')] - opt_epd[('Call-Put', 'spot')])
opt_epd = opt_epd.set_index(('Call-Put', 'strike'))
opt_epd.index.name = 'strike'
opt_epd = opt_epd.sort([('Call-Put', 'diffKF')]).head(2)
ivd_epd = opt_epd[('Put', 'iv')].mean() - opt_epd[('Call', 'iv')].mean()
ivd.append(ivd_epd)
ivd.append(opt_epd[('Put', 'iv')].mean())
ivd.append(opt_epd[('Call', 'iv')].mean())
pcivd.ix[Date.toDateTime(date)] = ivd
return pcivd
def histPCIVD50ETF(beginDate, endDate):
begin = Date.fromDateTime(beginDate)
end = Date.fromDateTime(endDate)
cal = Calendar('China.SSE')
dates = cal.bizDatesList(begin, end)
pcivd = pd.DataFrame()
for dt in dates:
pcivd_dt = histDayPCIVD50ETF(dt)
pcivd = concat([pcivd, pcivd_dt])
pcivd['nearDiff'] = pcivd['nearPCIVD'].diff()
pcivd['nextDiff'] = pcivd['nextPCIVD'].diff()
return pcivd
def histPCIVD50ETF_check(beginDate, endDate):
begin = Date.fromDateTime(beginDate)
end = Date.fromDateTime(endDate)
cal = Calendar('China.SSE')
dates = cal.bizDatesList(begin, end)
pcivd = pd.DataFrame()
for dt in dates:
pcivd_dt = histDayPCIVD50ETF_check(dt)
pcivd = concat([pcivd, pcivd_dt])
pcivd['nearPutDiff'] = pcivd['nearPutIV'].diff()
pcivd['nearCallDiff'] = pcivd['nearCallIV'].diff()
pcivd['nextPutDiff'] = pcivd['nextPutIV'].diff()
pcivd['nextCallDiff'] = pcivd['nextCallIV'].diff()
return pcivd
计算PCIVD
- 期权自15年2月9号上市
- 此处计算得到的数据可以用在后面几条策略中
结果中的列分别为:
- nearPCIVD:当月PCIVD
- nextPCIVD:次月PCIVD
- nearDiff:当月PCIVD与前一日值的变化量
- nextDiff:次月PCIVD与前一日值的变化量
## PCIVD计算示例
start = datetime(2015, 2, 9) # 回测起始时间
end = datetime(2015, 10, 12) # 回测结束时间
pcivd = histPCIVD50ETF(start, end)
pcivd.tail()
nearPCIVD | nextPCIVD | nearDiff | nextDiff | |
---|---|---|---|---|
date | ||||
2015-09-29 | 0.15540 | 0.15915 | 0.02660 | 0.0073 |
2015-09-30 | 0.10205 | 0.14915 | -0.05335 | -0.0100 |
2015-10-08 | 0.08845 | 0.10645 | -0.01360 | -0.0427 |
2015-10-09 | 0.08320 | 0.10375 | -0.00525 | -0.0027 |
2015-10-12 | 0.04635 | 0.07065 | -0.03685 | -0.0331 |
2.1 结合使用当月、次月 PCIVD 的择时策略
策略思路:考虑当月 PCIVD 和 次月 PCIVD 的日变化量
- 当月 PCIVD 和 次月 PCIVD 同时变小(当月和次月的 PCIVDDiff 同时小于0),则今天全仓50ETF
- 否则,清仓观望
start = datetime(2015, 2, 9) # 回测起始时间
end = datetime(2015, 10, 8) # 回测结束时间
benchmark = '510050.XSHG' # 策略参考标准
universe = ['510050.XSHG'] # 股票池
capital_base = 100000 # 起始资金
commission = Commission(0.0,0.0)
refresh_rate = 1
# pcivd = histPCIVD50ETF(start, end)
def initialize(account): # 初始化虚拟账户状态
account.fund = universe[0]
def handle_data(account): # 每个交易日的买入卖出指令
fund = account.fund
# 获取回测当日的前一天日期
dt = Date.fromDateTime(account.current_date)
cal = Calendar('China.IB')
last_day = cal.advanceDate(dt,'-1B',BizDayConvention.Preceding) #计算出倒数第一个交易日
last_day_str = last_day.strftime("%Y-%m-%d")
# 计算买入卖出信号
try:
# 拿取PCIVD数据
pcivd_near = pcivd.nearDiff.loc[last_day_str]
pcivd_next = pcivd.nextDiff.loc[last_day_str]
long_flag = True if pcivd_near < 0 and pcivd_next < 0 else False
except:
long_flag = False
if long_flag:
# 买入时,全仓杀入
try:
approximationAmount = int(account.cash / account.referencePrice[fund] / 100.0) * 100
order(fund, approximationAmount)
except:
return
else:
# 卖出时,全仓清空
order_to(fund, 0)
PCR 和 PCIVD 的良好择时效果表明,虽然回测时间短,但它们均可以通过期权市场的信息来给出在现货市场的买卖择时信号,必要时建议我们空仓
3. 监视最近 PCR 和 PCIVD 走势
- 每日监视 PCR 和 PCIVD 近期走势,指导次日操作
- 如果 PCR 和 PCIVD 的值降低,那么我们就在第二天买入
cal = Calendar('China.IB')
# Dates
end = Date.todaysDate()
end = cal.advanceDate(end,'-1B',BizDayConvention.Preceding) # 这里结束点选择昨天,因为DataAPI的今日数据要到收盘后比较晚才能拿到;实际中可以自己调整
start = cal.advanceDate(end,'-15B',BizDayConvention.Preceding) # 开始点为七天前
## 计算 PCR 和 PCIVD
start = start.toDateTime()
end = end.toDateTime()
hist_pcr = histPCR50ETF(start, end) # 计算PCR
hist_pcivd = histPCIVD50ETF(start, end) # 计算PCIVD
hist_pcr[['nearVolPCR', 'nearValuePCR']].plot(style='s-')
hist_pcivd[['nearPCIVD', 'nextPCIVD']].plot(style='s-')
<matplotlib.axes.AxesSubplot at 0x852ba90>
PCIVD 图中,近月期权的 PCIVD 在行权日为0,需要注意;行权日附近,可以以次近月期权的 PCIVD 走势为参考
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论