- Logstash
- Logstash - 入门示例
- 入门示例 - 下载安装
- 入门示例 - hello world
- 入门示例 - 配置语法
- 入门示例 - plugin的安装
- 入门示例 - 长期运行
- Logstash - 插件配置
- 插件配置 - input配置
- input配置 - file
- input配置 - stdin
- input配置 - syslog
- input配置 - tcp
- 插件配置 - codec配置
- codec配置 - json
- codec配置 - multiline
- codec配置 - collectd
- codec配置 - netflow
- 插件配置 - filter配置
- filter配置 - date
- filter配置 - grok
- filter配置 - dissect
- filter配置 - geoip
- filter配置 - json
- filter配置 - kv
- filter配置 - metrics
- filter配置 - mutate
- filter配置 - ruby
- filter配置 - split
- filter配置 - elapsed
- 插件配置 - output配置
- output配置 - elasticsearch
- output配置 - email
- output配置 - exec
- output配置 - file
- output配置 - nagios
- output配置 - statsd
- output配置 - stdout
- output配置 - tcp
- output配置 - hdfs
- Logstash - 场景示例
- 场景示例 - nginx访问日志
- 场景示例 - nginx错误日志
- 场景示例 - postfix日志
- 场景示例 - ossec日志
- 场景示例 - windows系统日志
- 场景示例 - Java日志
- 场景示例 - MySQL慢查询日志
- Logstash - 性能与测试
- 性能与测试 - generator方式
- 性能与测试 - 监控方案
- 监控方案 - logstash-input-heartbeat方式
- 监控方案 - jmx启动参数方式
- 监控方案 - API方式
- Logstash - 扩展方案
- 扩展方案 - 通过redis传输
- 扩展方案 - 通过kafka传输
- 扩展方案 - AIX 平台上的logstash-forwarder-java
- 扩展方案 - rsyslog
- 扩展方案 - nxlog
- 扩展方案 - heka
- 扩展方案 - fluent
- 扩展方案 - Message::Passing
- Logstash - 源码解析
- 源码解析 - pipeline流程
- 源码解析 - Event的生成
- Logstash - 插件开发
- 插件开发 - utmp插件示例
- Beats
- Beats - filebeat
- Beats - packetbeat网络流量分析
- Beats - metricbeat
- Beats - winlogbeat
- ElasticSearch
- ElasticSearch - 架构原理
- 架构原理 - segment、buffer和translog对实时性的影响
- 架构原理 - segment merge对写入性能的影响
- 架构原理 - routing和replica的读写过程
- 架构原理 - shard的allocate控制
- 架构原理 - 自动发现的配置
- ElasticSearch - 接口使用示例
- 接口使用示例 - 增删改查操作
- 接口使用示例 - 搜索请求
- 接口使用示例 - Painless脚本
- 接口使用示例 - reindex接口
- ElasticSearch - 性能优化
- 性能优化 - bulk提交
- 性能优化 - gateway配置
- 性能优化 - 集群状态维护
- 性能优化 - 缓存
- 性能优化 - fielddata
- 性能优化 - curator工具
- 性能优化 - profile接口
- ElasticSearch - rally测试方案
- ElasticSearch - 多集群互联
- ElasticSearch - 别名的应用
- ElasticSearch - 映射与模板的定制
- ElasticSearch - puppet-elasticsearch模块的使用
- ElasticSearch - 计划内停机升级的操作流程
- ElasticSearch - 镜像备份
- ElasticSearch - rollover和shrink
- ElasticSearch - Ingest节点
- ElasticSearch - Hadoop 集成
- Hadoop 集成 - spark streaming交互
- ElasticSearch - 权限管理
- 权限管理 - Shield
- 权限管理 - Search-Guard 在 Elasticsearch 2.x 上的运用
- ElasticSearch - 监控方案
- 监控方案 - 监控相关接口
- 监控相关接口 - 集群健康状态
- 监控相关接口 - 节点状态
- 监控相关接口 - 索引状态
- 监控相关接口 - 任务管理
- 监控相关接口 - cat 接口的命令行使用
- 监控方案 - 日志记录
- 监控方案 - 实时bigdesk方案
- 监控方案 - cerebro
- 监控方案 - zabbix trapper方案
- ElasticSearch - ES在运维监控领域的其他玩法
- ES在运维监控领域的其他玩法 - percolator接口
- ES在运维监控领域的其他玩法 - watcher报警
- ES在运维监控领域的其他玩法 - ElastAlert
- ES在运维监控领域的其他玩法 - 时序数据库
- ES在运维监控领域的其他玩法 - Grafana
- ES在运维监控领域的其他玩法 - juttle
- ES在运维监控领域的其他玩法 - Etsy的Kale异常检测
- Kibana 5
- Kibana 5 - 安装、配置和运行
- Kibana 5 - 生产环境部署
- Kibana 5 - discover功能
- Kibana 5 - 各visualize功能
- 各visualize功能 - area
- 各visualize功能 - table
- 各visualize功能 - line
- 各visualize功能 - markdown
- 各visualize功能 - metric
- 各visualize功能 - pie
- 各visualize功能 - tile map
- 各visualize功能 - vertical bar
- Kibana 5 - dashboard功能
- Kibana 5 - timelion 介绍
- Kibana 5 - console 介绍
- Kibana 5 - setting功能
- Kibana 5 - 常用sub agg示例
- 常用sub agg示例 - 函数堆栈链分析
- 常用sub agg示例 - 分图统计
- 常用sub agg示例 - TopN的时序趋势图
- 常用sub agg示例 - 响应时间的百分占比趋势图
- 常用sub agg示例 - 响应时间的概率分布在不同时段的相似度对比
- Kibana 5 - 源码解析
- 源码解析 - .kibana索引的数据结构
- 源码解析 - 主页入口
- 源码解析 - discover解析
- 源码解析 - visualize解析
- 源码解析 - dashboard解析
- Kibana 5 - 插件
- 插件 - 可视化开发示例
- 插件 - 后端开发示例
- 插件 - 完整app开发示例
- Kibana 5 - Kibana报表
- 竞品对比
filter配置 - ruby
如果你稍微懂那么一点点 Ruby 语法的话,filters/ruby 插件将会是一个非常有用的工具。
比如你需要稍微修改一下 LogStash::Event
对象,但是又不打算为此写一个完整的插件,用 filters/ruby 插件绝对感觉良好。
配置示例
filter {
ruby {
init => "@kname = ['client','servername','url','status','time','size','upstream','upstreamstatus','upstreamtime','referer','xff','useragent']"
code => "
new_event = LogStash::Event.new(Hash[@kname.zip(event.get('message').split('|'))])
new_event.remove('@timestamp')
event.append(new_event)"
}
}
官网示例是一个比较有趣但是没啥大用的做法 —— 随机取消 90% 的事件。
所以上面我们给出了一个有用而且强大的实例。
解释
通常我们都是用 filters/grok 插件来捕获字段的,但是正则耗费大量的 CPU 资源,很容易成为 Logstash 进程的瓶颈。
而实际上,很多流经 Logstash 的数据都是有自己预定义的特殊分隔符的,我们可以很简单的直接切割成多个字段。
filters/mutate 插件里的 “split” 选项只能切成数组,后续很不方便使用和识别。而在 filters/ruby 里,我们可以通过 “init” 参数预定义好由每个新字段的名字组成的数组,然后在 “code” 参数指定的 Ruby 语句里通过两个数组的 zip 操作生成一个哈希并添加进数组里。短短一行 Ruby 代码,可以减少 50% 以上的 CPU 使用率。
注1:从 Logstash-2.3 开始,LogStash::Event.append
不再直接接受 Hash 对象,而必须是 LogStash::Event
对象。所以示例变成要先初始化一个新 event,再把无用的 @timestamp
移除,再 append 进去。否则会把 @timestamp
变成有两个时间的数组了!
注2:从 Logstash-5.0 开始,LogStash::Event
改为 Java 实现,直接使用 event["parent"]["child"]
形式获取的不是原事件的引用而是复制品。需要改用 event.get('[parent][child]')
和 event.set('[parent][child]', 'value')
的方法。
filters/ruby 插件用途远不止这一点,下一节你还会继续见到它的身影。
更多实例
2014 年 09 年 23 日新增
filter{
date {
match => ["datetime" , "UNIX"]
}
ruby {
code => "event.cancel if 5 * 24 * 3600 < (event['@timestamp']-::Time.now).abs"
}
}
在实际运用中,我们几乎肯定会碰到出乎意料的输入数据。这都有可能导致 Elasticsearch 集群出现问题。
当数据格式发生变化,比如 UNIX 时间格式变成 UNIX_MS 时间格式,会导致 logstash 疯狂创建新索引,集群崩溃。
或者误输入过老的数据时,因为一般我们会 close 几天之前的索引以节省内存,必要时再打开。而直接尝试把数据写入被关闭的索引会导致内存问题。
这时候我们就需要提前校验数据的合法性。上面配置,就是用于过滤掉时间范围与当前时间差距太大的非法数据的。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论