返回介绍

双摆系统的动画模拟

发布于 2025-02-25 22:46:24 字数 3147 浏览 0 评论 0 收藏 0

相关文档:单摆和双摆模拟

用 odeint 解双摆系统

文件名: double_pendulum_odeint.py

# -*- coding: utf-8 -*-

from math import sin,cos
import numpy as np
from scipy.integrate import odeint

g = 9.8

class DoublePendulum(object):
  def __init__(self, m1, m2, l1, l2):
    self.m1, self.m2, self.l1, self.l2 = m1, m2, l1, l2
    self.init_status = np.array([0.0,0.0,0.0,0.0])

  def equations(self, w, t):
    """
 微分方程公式
 """
    m1, m2, l1, l2 = self.m1, self.m2, self.l1, self.l2
    th1, th2, v1, v2 = w
    dth1 = v1
    dth2 = v2

    #eq of th1
    a = l1*l1*(m1+m2)  # dv1 parameter
    b = l1*m2*l2*cos(th1-th2) # dv2 paramter
    c = l1*(m2*l2*sin(th1-th2)*dth2*dth2 + (m1+m2)*g*sin(th1))

    #eq of th2
    d = m2*l2*l1*cos(th1-th2) # dv1 parameter
    e = m2*l2*l2 # dv2 parameter
    f = m2*l2*(-l1*sin(th1-th2)*dth1*dth1 + g*sin(th2))

    dv1, dv2 = np.linalg.solve([[a,b],[d,e]], [-c,-f])

    return np.array([dth1, dth2, dv1, dv2])

def double_pendulum_odeint(pendulum, ts, te, tstep):
  """
 对双摆系统的微分方程组进行数值求解,返回两个小球的 X-Y 坐标
 """
  t = np.arange(ts, te, tstep)
  track = odeint(pendulum.equations, pendulum.init_status, t)
  th1_array, th2_array = track[:,0], track[:, 1]
  l1, l2 = pendulum.l1, pendulum.l2
  x1 = l1*np.sin(th1_array)
  y1 = -l1*np.cos(th1_array)
  x2 = x1 + l2*np.sin(th2_array)
  y2 = y1 - l2*np.cos(th2_array)
  pendulum.init_status = track[-1,:].copy() #将最后的状态赋给 pendulum
  return [x1, y1, x2, y2]

if __name__ == "__main__":  
  import matplotlib.pyplot as pl
  pendulum = DoublePendulum(1.0, 2.0, 1.0, 2.0) 
  th1, th2 = 1.0, 2.0
  pendulum.init_status[:2] = th1, th2
  x1, y1, x2, y2 = double_pendulum_odeint(pendulum, 0, 30, 0.02)
  pl.plot(x1,y1, label = u"上球")
  pl.plot(x2,y2, label = u"下球")
  pl.title(u"双摆系统的轨迹,初始角度=%s,%s" % (th1, th2))
  pl.legend()
  pl.axis("equal")
  pl.show()

摆动动画

文件名: double_pendulum_animation.py

# -*- coding: utf-8 -*-
import matplotlib
matplotlib.use('WXAgg') # do this before importing pylab
import matplotlib.pyplot as pl
from double_pendulum_odeint import double_pendulum_odeint, DoublePendulum

fig = pl.figure(figsize=(4,4))
line1, = pl.plot([0,0], [0,0], "-o")
line2, = pl.plot([0,0], [0,0], "-o")
pl.axis("equal")
pl.xlim(-4,4)
pl.ylim(-4,2)

pendulum = DoublePendulum(1.0, 2.0, 1.0, 2.0)
pendulum.init_status[:] = 1.0, 2.0, 0, 0

x1, y1, x2, y2 = [],[],[],[]
idx = 0

def update_line(event):
  global x1, x2, y1, y2, idx
  if idx == len(x1):
    x1, y1, x2, y2 = double_pendulum_odeint(pendulum, 0, 1, 0.05)
    idx = 0 
  line1.set_xdata([0, x1[idx]])
  line1.set_ydata([0, y1[idx]])
  line2.set_xdata([x1[idx], x2[idx]])
  line2.set_ydata([y1[idx], y2[idx]])
  fig.canvas.draw()         
  idx += 1

import wx
id = wx.NewId()
actor = fig.canvas.manager.frame
timer = wx.Timer(actor, id=id)
timer.Start(1)
wx.EVT_TIMER(actor, id, update_line)
pl.show()

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文