- 一、概念
- 二、程序
- 三、练习
- 四、思考题
- 一、概念
- 二、程序
- 三、练习
- 四、思考题
- 一、概念
- 二、代码
- 三、练习
- 四、思考题
- 一、概念
- 二、代码
- 三、习题
- 四、思考题
- 一、题目描述
- 二、常规方法
- 三、常规方法的比较次数
- 四、方法改进一
- 五、第一次循环的可用信息
- 六、根据第一遍的可用信息作第二次循环
- 七、方法改进一的伪代码
- 八、方法改进一的比较次数
- 九、方法改进二
- 十、方法改进二的比较次数
- 十一、代码
- 一、概念
- 二、代码
- 三、练习
- 一、概念
- 二、代码
- 三、练习
- 一、概念
- 二、代码
- 三、练习
- 一、概念
- 二、练习
- 一、概念
- 二、代码
- 三、习题
- 一、概念
- 二、代码
- 三、练习
- 四、思考题
- 一、概念
- 二、代码
- 三、练习
- 四、思考题
- 一、概念
- 二、代码
- 三、练习
- 一、综述
- 二、代码
- 三、练习
- 一、综述
- 二、代码
- 三、练习
- 四、思考题
- 一、综述
- 二、活动选择问题
- 三、贪心策略的基本内容
- 四、哈夫曼编码
- 五、思考题
- 一、定义
- 二、代码
- 三、练习
- 四、思考题
- 一、概念
- 二、代码
- 三、练习
- 四、思考题
- 一、综述
- 二、理解
- 三、改进
- 四、代码
- 五、习题
- 四、思考题
- 一、综述
- 二、代码
- 三、练习
- 四、思考题
- 一、综述
- 二、代码
- 三、练习
- 一、综述
- 二、代码
- 三、练习
- 一、综述
- 二、代码
- 三、练习
- 一、综述
- 二、代码
- 三、练习
- 一、综述
- 二、代码
- 三、练习
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
二、代码
1.Os_Tree.h
#include <iostream>
using namespace std;
#define BLACK 0
#define RED 1
//顺序统计量树结点结构
struct node
{
/*红黑树的域*/
int key;
bool color;
node *p;
node *left;
node *right;
/*附加信息*/
int size;//以结点 x 为根的子树的内部结点的个数,x->key=x->left->key+x->right->key+1
/*构造函数*/
node(node *init, int k):left(init),right(init),p(init),key(k),color(BLACK),size(1){}
};
//顺序统计量树结构
class Os_Tree
{
public:
node *root;
node *nil;//哨兵
/*构造函数*/
Os_Tree(){nil = new node(NULL, -1);root = nil;nil->size = 0;};
/*动态顺序统计相关操作*/
node *Os_Select(node *x, int i);
int Os_Rank(node *x);
/*红黑树的相关操作*/
void Left_Rotate(node *x);//左旋
void Right_Rotate(node *x);//右旋
void Os_Insert_Fixup(node *z);//插入调整
void Os_Insert(node *z);//插入
void Os_Delete_Fixup(node *x);//删除调整
node *Os_Delete(node *z);//删除
void Print();//输出
void Print(node *x);//输出
node *Os_Search(node *x, int k);//在 x 的子树中查找关键字为 k 的结点
node *Tree_Successor(node *x);//求后继
node *Tree_Minimum(node *x);//求关键字最小的点
};
//左旋,令 y = x->right, 左旋是以 x 和 y 之间的链为支轴进行旋转
//涉及到的结点包括:x,y,y->left,令 node={p,l,r},具体变化如下:
//x={x->p,x->left,y}变为{y,x->left,y->left}
//y={x,y->left,y->right}变为{x->p,x,y->right}
//y->left={y,y->left->left,y->left->right}变为{x,y->left->left,y->left->right}
void Os_Tree::Left_Rotate(node *x)
{
//令 y = x->right
node *y = x->right;
//按照上面的方式修改三个结点的指针,注意修改指针的顺序
x->right = y->left;
if(y->left != nil)
y->left->p = x;
y->p = x->p;
if(x->p == nil)//特殊情况:x 是根结点
root = y;
else if(x == x->p->left)
x->p->left = y;
else
x->p->right = y;
y->left = x;
x->p = y;
//对附加信息的维护
y->size = x->size;
x->size = x->left->size + x->right->size + 1;
}
//右旋,令 y = x->left, 左旋是以 x 和 y 之间的链为支轴进行旋转
//旋转过程与上文类似
void Os_Tree::Right_Rotate(node *x)
{
node *y = x->left;
x->left = y->right;
if(y->right != nil)
y->right->p = x;
y->p = x->p;
if(x->p == nil)
root = y;
else if(x == x->p->right)
x->p->right = y;
else
x->p->left = y;
y->right = x;
x->p = y;
//对附加信息的维护
y->size = x->size;
x->size = x->left->size + x->right->size + 1;
}
//红黑树调整
void Os_Tree::Os_Insert_Fixup(node *z)
{
node *y;
//唯一需要调整的情况,就是违反性质 2 的时候,如果不违反性质 2,调整结束
while(z->p->color == RED)
{
//p[z]是左孩子时,有三种情况
if(z->p == z->p->p->left)
{
//令 y 是 z 的叔结点
y = z->p->p->right;
//第一种情况,z 的叔叔 y 是红色的
if(y->color == RED)
{
//将 p[z]和 y 都着为黑色以解决 z 和 p[z]都是红色的问题
z->p->color = BLACK;
y->color = BLACK;
//将 p[p[z]]着为红色以保持性质 5
z->p->p->color = RED;
//把 p[p[z]]当作新增的结点 z 来重复 while 循环
z = z->p->p;
}
else
{
//第二种情况:z 的叔叔是黑色的,且 z 是右孩子
if(z == z->p->right)
{
//对 p[z]左旋,转为第三种情况
z = z->p;
Left_Rotate(z);
}
//第三种情况:z 的叔叔是黑色的,且 z 是左孩子
//交换 p[z]和 p[p[z]]的颜色,并右旋
z->p->color = BLACK;
z->p->p->color = RED;
Right_Rotate(z->p->p);
}
}
//p[z]是右孩子时,有三种情况,与上面类似
else if(z->p == z->p->p->right)
{
y = z->p->p->left;
if(y->color == RED)
{
z->p->color = BLACK;
y->color = BLACK;
z->p->p->color = RED;
z = z->p->p;
}
else
{
if(z == z->p->left)
{
z = z->p;
Right_Rotate(z);
}
z->p->color = BLACK;
z->p->p->color = RED;
Left_Rotate(z->p->p);
}
}
}
//根结点置为黑色
root->color = BLACK;
}
//插入一个结点
void Os_Tree::Os_Insert(node *z)
{
node *y = nil, *x = root;
//找到应该插入的位置,与二叉查找树的插入相同
while(x != nil)
{
x->size++;
y = x;
if(z->key < x->key)
x = x->left;
else
x = x->right;
}
z->p = y;
if(y == nil)
root = z;
else if(z->key < y->key)
y->left = z;
else
y->right = z;
z->left = nil;
z->right = nil;
//将新插入的结点转为红色
z->color = RED;
//从新插入的结点开始,向上调整
Os_Insert_Fixup(z);
}
//对树进行调整,x 指向一个红黑结点,调整的过程是将额外的黑色沿树上移
void Os_Tree::Os_Delete_Fixup(node *x)
{
node *w;
//如果这个额外的黑色在一个根结点或一个红结点上,结点会吸收额外的黑色,成为一个黑色的结点
while(x != root && x->color == BLACK)
{
//若 x 是其父的左结点(右结点的情况相对应)
if(x == x->p->left)
{
//令 w 为 x 的兄弟,根据 w 的不同,分为三种情况来处理
//执行删除操作前 x 肯定是没有兄弟的,执行删除操作后 x 肯定是有兄弟的
w = x->p->right;
//第一种情况:w 是红色的
if(w->color == RED)
{
//改变 w 和 p[x]的颜色
w->color = BLACK;
x->p->color = RED;
//对 p[x]进行一次左旋
Left_Rotate(x->p);
//令 w 为 x 的新兄弟
w = x->p->right;
//转为 2.3.4 三种情况之一
}
//第二情况:w 为黑色,w 的两个孩子也都是黑色
if(w->left->color == BLACK && w->right->color == BLACK)
{
//去掉 w 和 x 的黑色
//w 只有一层黑色,去掉变为红色,x 有多余的一层黑色,去掉后恢复原来颜色
w->color = RED;
//在 p[x]上补一层黑色
x = x->p;
//现在新 x 上有个额外的黑色,转入 for 循环继续处理
}
//第三种情况,w 是黑色的,w->left 是红色的,w->right 是黑色的
else
{
if(w->right->color == BLACK)
{
//改变 w 和 left[x]的颜色
w->left->color = BLACK;
w->color = RED;
//对 w 进行一次右旋
Right_Rotate(w);
//令 w 为 x 的新兄弟
w = x->p->right;
//此时转变为第四种情况
}
//第四种情况:w 是黑色的,w->left 是黑色的,w->right 是红色的
//修改 w 和 p[x]的颜色
w->color =x->p->color;
x->p->color = BLACK;
w->right->color = BLACK;
//对 p[x]进行一次左旋
Left_Rotate(x->p);
//此时调整已经结束,将 x 置为根结点是为了结束循环
x = root;
}
}
//若 x 是其父的左结点(右结点的情况相对应)
else if(x == x->p->right)
{
//令 w 为 x 的兄弟,根据 w 的不同,分为三种情况来处理
//执行删除操作前 x 肯定是没有兄弟的,执行删除操作后 x 肯定是有兄弟的
w = x->p->left;
//第一种情况:w 是红色的
if(w->color == RED)
{
//改变 w 和 p[x]的颜色
w->color = BLACK;
x->p->color = RED;
//对 p[x]进行一次左旋
Right_Rotate(x->p);
//令 w 为 x 的新兄弟
w = x->p->left;
//转为 2.3.4 三种情况之一
}
//第二情况:w 为黑色,w 的两个孩子也都是黑色
if(w->right->color == BLACK && w->left->color == BLACK)
{
//去掉 w 和 x 的黑色
//w 只有一层黑色,去掉变为红色,x 有多余的一层黑色,去掉后恢复原来颜色
w->color = RED;
//在 p[x]上补一层黑色
x = x->p;
//现在新 x 上有个额外的黑色,转入 for 循环继续处理
}
//第三种情况,w 是黑色的,w->right 是红色的,w->left 是黑色的
else
{
if(w->left->color == BLACK)
{
//改变 w 和 right[x]的颜色
w->right->color = BLACK;
w->color = RED;
//对 w 进行一次右旋
Left_Rotate(w);
//令 w 为 x 的新兄弟
w = x->p->left;
//此时转变为第四种情况
}
//第四种情况:w 是黑色的,w->right 是黑色的,w->left 是红色的
//修改 w 和 p[x]的颜色
w->color =x->p->color;
x->p->color = BLACK;
w->left->color = BLACK;
//对 p[x]进行一次左旋
Right_Rotate(x->p);
//此时调整已经结束,将 x 置为根结点是为了结束循环
x = root;
}
}
}
//吸收了额外的黑色
x->color = BLACK;
}
//找最小值
node *Os_Tree::Tree_Minimum(node *x)
{
//只要有比当前结点小的结点
while(x->left != nil)
x = x->left;
return x;
}
//查找中序遍历下 x 结点的后继,后继是大于 key[x]的最小的结点
node *Os_Tree::Tree_Successor(node *x)
{
//如果有右孩子
if(x->right != nil)
//右子树中的最小值
return Tree_Minimum(x->right);
//如果 x 的右子树为空且 x 有后继 y,那么 y 是 x 的最低祖先结点,且 y 的左儿子也是
node *y = x->p;
while(y != NULL && x == y->right)
{
x = y;
y = y->p;
}
return y;
}
//递归地查询二叉查找树
node *Os_Tree::Os_Search(node *x, int k)
{
//找到叶子结点了还没找到,或当前结点是所查找的结点
if(x->key == -1 || k == x->key)
return x;
//所查找的结点位于当前结点的左子树
if(k < x->key)
return Os_Search(x->left, k);
//所查找的结点位于当前结点的左子树
else
return Os_Search(x->right, k);
}
//红黑树的删除
node *Os_Tree::Os_Delete(node *z)
{
//找到结点的位置并删除,这一部分与二叉查找树的删除相同
node *x, *y;
if(z->left == nil || z->right == nil)
y = z;
else y = Tree_Successor(z);
node *p = y->p;
while(p != nil)
{
p->size--;
p = p->p;
}
if(y->left != nil)
x = y->left;
else x = y->right;
x->p = y->p;
if(y->p == nil)
root = x;
else if(y == y->p->left)
y->p->left = x;
else
y->p->right = x;
if(y != z)
z->key = y->key;
//如果被删除的结点是黑色的,则需要调整
if(y->color == BLACK)
Os_Delete_Fixup(x);
return y;
}
void Os_Tree::Print(node *x)
{
if(x->key == -1)
return;
Print(x->left);
cout<<x->key<<' '<<x->color<<endl;
Print(x->right);
}
void Os_Tree::Print()
{
Print(root);
cout<<endl;
}
//查找以 x 为根结点的树中第 i 大的结点
node *Os_Tree::Os_Select(node *x, int i)
{
//令 x 左子树中点的个数为 r-1,
int r = x->left->size +1;
//那么 x 是 x 树中第 r 大的结点
if(r == i)
return x;
//第 i 大的元素在 x->left 中
else if(i < r)
return Os_Select(x->left, i);
//第 i 大的元素在 x->right 中
else
return Os_Select(x->right, i - r);
}
//计算树 T 中进行顺序遍历后得到的线性序中 x 的位置
int Os_Tree::Os_Rank(node *x)
{
//置 r 为以 x 为根的子树中 key[x]的秩
int r = x->left->size + 1;
node *y = x;
while(y != root)
{
//若 y 是 p[y]的右孩子,p[y]和 p[y]左子树中所有结点前于 x
if(y == y->p->right)
r = r + y->p->left->size + 1;
y = y->p;
}
return r;
}
2.main.cpp
#include <iostream>
#include "Os_Tree.h"
using namespace std;
int main()
{
char ch;
int x;
//生成一棵顺序统计树
Os_Tree *T = new Os_Tree;
while(1)
{
cin>>ch;
switch(ch)
{
//插入一个元素
case 'I':
{
cin>>x;
node *z = new node(T->nil, x);
T->Os_Insert(z);
break;
}
//删除一个元素
case 'D':
{
cin>>x;
node *z = T->Os_Search(T->root, x);
if(z == NULL)
cout<<"not exist"<<endl;
else
T->Os_Delete(z);
break;
}
//计算第 x 小关键字
case 'S':
{
cin>>x;
node *z = T->Os_Select(T->root, x);
if(z == NULL)
cout<<"not exist"<<endl;
else
cout<<z->key<<endl;
break;
}
//计算 x 的位置
case 'R':
{
cin>>x;
node *z = T->Os_Search(T->root, x);
if(z == NULL)
cout<<"not exist"<<endl;
else
cout<<T->Os_Rank(z)<<endl;
break;
}
case 'P':
T->Print();
break;
default:
break;
}
}
return 0;
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论