返回介绍

Optimization bake-off

发布于 2025-02-25 23:44:02 字数 1245 浏览 0 评论 0 收藏 0

Python is a high-level interpreted language, which greatly reduces the time taken to prototyte and develop useful statistical programs. However, the trade-off is that pure Python programs can be orders of magnitude slower than programs in compiled languages such as C/C++ or Forran. Hence most numerical and statistical programs often include interfaces to compiled code (e.g. numpy which is written in C) or more recently, are just-in-time compiled to native machine code (e.g. numba, pymc3). Fortunately, it is relatively easy to write custom modules that comple to native machine code and call them from Pytthon, an important factor in the popularity of Python as a langugae for scientific and statistical computing.

We will use the example of calculating the pairwsise Euclidean distance between all points to illustrate the various methods of interfacing with native code.

Adapted and extended from http://nbviewer.ipython.org/url/jakevdp.github.io/downloads/notebooks/NumbaCython.ipynb

A = np.array([[0.0,0.0],[3.0,4.0]])
n = 1000
p = 3
xs = np.random.random((n, p))

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文