- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Inheritance
We are not quite done yet with our table layout exercise. It helps readability to right-align columns of numbers. We should create another cell type that is like TextCell
, but rather than padding the lines on the right side, it pads them on the left side so that they align to the right.
We could simply write a whole new constructor with all three methods in its prototype. But prototypes may themselves have prototypes, and this allows us to do something clever.
function RTextCell(text) { TextCell.call(this, text); } RTextCell.prototype = Object.create(TextCell.prototype); RTextCell.prototype.draw = function(width, height) { var result = []; for (var i = 0; i < height; i++) { var line = this.text[i] || ""; result.push(repeat(" ", width - line.length) + line); } return result; };
We reuse the constructor and the minHeight
and minWidth
methods from the regular TextCell
. An RTextCell
is now basically equivalent to a TextCell
, except that its draw
method contains a different function.
This pattern is called inheritance. It allows us to build slightly different data types from existing data types with relatively little work. Typically, the new constructor will call the old constructor (using the call
method in order to be able to give it the new object as its this
value). Once this constructor has been called, we can assume that all the fields that the old object type is supposed to contain have been added. We arrange for the constructor’s prototype to derive from the old prototype so that instances of this type will also have access to the properties in that prototype. Finally, we can override some of these properties by adding them to our new prototype.
Now, if we slightly adjust the dataTable
function to use RTextCell
s for cells whose value is a number, we get the table we were aiming for.
function dataTable(data) { var keys = Object.keys(data[0]); var headers = keys.map(function(name) { return new UnderlinedCell(new TextCell(name)); }); var body = data.map(function(row) { return keys.map(function(name) { var value = row[name]; // This was changed: if (typeof value == "number") return new RTextCell(String(value)); else return new TextCell(String(value)); }); }); return [headers].concat(body); } console.log(drawTable(dataTable(MOUNTAINS))); // → … beautifully aligned table
Inheritance is a fundamental part of the object-oriented tradition, alongside encapsulation and polymorphism. But while the latter two are now generally regarded as wonderful ideas, inheritance is somewhat controversial.
The main reason for this is that it is often confused with polymorphism, sold as a more powerful tool than it really is, and subsequently overused in all kinds of ugly ways. Whereas encapsulation and polymorphism can be used to separate pieces of code from each other, reducing the tangledness of the overall program, inheritance fundamentally ties types together, creating more tangle.
You can have polymorphism without inheritance, as we saw. I am not going to tell you to avoid inheritance entirely—I use it regularly in my own programs. But you should see it as a slightly dodgy trick that can help you define new types with little code, not as a grand principle of code organization. A preferable way to extend types is through composition, such as how UnderlinedCell
builds on another cell object by simply storing it in a property and forwarding method calls to it in its own methods.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论