返回介绍

solution / 0800-0899 / 0877.Stone Game / README_EN

发布于 2024-06-17 01:03:33 字数 6687 浏览 0 评论 0 收藏 0

877. Stone Game

中文文档

Description

Alice and Bob play a game with piles of stones. There are an even number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].

The objective of the game is to end with the most stones. The total number of stones across all the piles is odd, so there are no ties.

Alice and Bob take turns, with Alice starting first. Each turn, a player takes the entire pile of stones either from the beginning or from the end of the row. This continues until there are no more piles left, at which point the person with the most stones wins.

Assuming Alice and Bob play optimally, return true_ if Alice wins the game, or _false_ if Bob wins_.

 

Example 1:

Input: piles = [5,3,4,5]
Output: true
Explanation: 
Alice starts first, and can only take the first 5 or the last 5.
Say she takes the first 5, so that the row becomes [3, 4, 5].
If Bob takes 3, then the board is [4, 5], and Alice takes 5 to win with 10 points.
If Bob takes the last 5, then the board is [3, 4], and Alice takes 4 to win with 9 points.
This demonstrated that taking the first 5 was a winning move for Alice, so we return true.

Example 2:

Input: piles = [3,7,2,3]
Output: true

 

Constraints:

  • 2 <= piles.length <= 500
  • piles.length is even.
  • 1 <= piles[i] <= 500
  • sum(piles[i]) is odd.

Solutions

Solution 1

class Solution:
  def stoneGame(self, piles: List[int]) -> bool:
    @cache
    def dfs(i: int, j: int) -> int:
      if i > j:
        return 0
      return max(piles[i] - dfs(i + 1, j), piles[j] - dfs(i, j - 1))

    return dfs(0, len(piles) - 1) > 0
class Solution {
  private int[] piles;
  private int[][] f;

  public boolean stoneGame(int[] piles) {
    this.piles = piles;
    int n = piles.length;
    f = new int[n][n];
    return dfs(0, n - 1) > 0;
  }

  private int dfs(int i, int j) {
    if (i > j) {
      return 0;
    }
    if (f[i][j] != 0) {
      return f[i][j];
    }
    return f[i][j] = Math.max(piles[i] - dfs(i + 1, j), piles[j] - dfs(i, j - 1));
  }
}
class Solution {
public:
  bool stoneGame(vector<int>& piles) {
    int n = piles.size();
    int f[n][n];
    memset(f, 0, sizeof(f));
    function<int(int, int)> dfs = [&](int i, int j) -> int {
      if (i > j) {
        return 0;
      }
      if (f[i][j]) {
        return f[i][j];
      }
      return f[i][j] = max(piles[i] - dfs(i + 1, j), piles[j] - dfs(i, j - 1));
    };
    return dfs(0, n - 1) > 0;
  }
};
func stoneGame(piles []int) bool {
  n := len(piles)
  f := make([][]int, n)
  for i := range f {
    f[i] = make([]int, n)
  }
  var dfs func(i, j int) int
  dfs = func(i, j int) int {
    if i > j {
      return 0
    }
    if f[i][j] == 0 {
      f[i][j] = max(piles[i]-dfs(i+1, j), piles[j]-dfs(i, j-1))
    }
    return f[i][j]
  }
  return dfs(0, n-1) > 0
}
function stoneGame(piles: number[]): boolean {
  const n = piles.length;
  const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(0));
  const dfs = (i: number, j: number): number => {
    if (i > j) {
      return 0;
    }
    if (f[i][j] === 0) {
      f[i][j] = Math.max(piles[i] - dfs(i + 1, j), piles[j] - dfs(i, j - 1));
    }
    return f[i][j];
  };
  return dfs(0, n - 1) > 0;
}

Solution 2

class Solution:
  def stoneGame(self, piles: List[int]) -> bool:
    n = len(piles)
    f = [[0] * n for _ in range(n)]
    for i, x in enumerate(piles):
      f[i][i] = x
    for i in range(n - 2, -1, -1):
      for j in range(i + 1, n):
        f[i][j] = max(piles[i] - f[i + 1][j], piles[j] - f[i][j - 1])
    return f[0][n - 1] > 0
class Solution {
  public boolean stoneGame(int[] piles) {
    int n = piles.length;
    int[][] f = new int[n][n];
    for (int i = 0; i < n; ++i) {
      f[i][i] = piles[i];
    }
    for (int i = n - 2; i >= 0; --i) {
      for (int j = i + 1; j < n; ++j) {
        f[i][j] = Math.max(piles[i] - f[i + 1][j], piles[j] - f[i][j - 1]);
      }
    }
    return f[0][n - 1] > 0;
  }
}
class Solution {
public:
  bool stoneGame(vector<int>& piles) {
    int n = piles.size();
    int f[n][n];
    memset(f, 0, sizeof(f));
    for (int i = 0; i < n; ++i) {
      f[i][i] = piles[i];
    }
    for (int i = n - 2; ~i; --i) {
      for (int j = i + 1; j < n; ++j) {
        f[i][j] = max(piles[i] - f[i + 1][j], piles[j] - f[i][j - 1]);
      }
    }
    return f[0][n - 1] > 0;
  }
};
func stoneGame(piles []int) bool {
  n := len(piles)
  f := make([][]int, n)
  for i, x := range piles {
    f[i] = make([]int, n)
    f[i][i] = x
  }
  for i := n - 2; i >= 0; i-- {
    for j := i + 1; j < n; j++ {
      f[i][j] = max(piles[i]-f[i+1][j], piles[j]-f[i][j-1])
    }
  }
  return f[0][n-1] > 0
}
function stoneGame(piles: number[]): boolean {
  const n = piles.length;
  const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(0));
  for (let i = 0; i < n; ++i) {
    f[i][i] = piles[i];
  }
  for (let i = n - 2; i >= 0; --i) {
    for (let j = i + 1; j < n; ++j) {
      f[i][j] = Math.max(piles[i] - f[i + 1][j], piles[j] - f[i][j - 1]);
    }
  }
  return f[0][n - 1] > 0;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文