- 1.2 服务介绍
- 1.3.1 概念介绍
- 1.3.2 快速入门
- 1.3.3 申请Quota
- 1.3.4 集群环境
- 1.3.5 Fdsfuse介绍
- 1.3.6 Tensorflow中使用hdfs
- 1.4 客户端使用
- 1.4.1 安装命令行工具
- 1.4.2 使用命令行工具
- 1.4.3 使用Python SDK
- 1.4.4 使用Web控制台
- 1.5 TrainJob功能
- 1.5.1 训练任务组件和流程
- 1.5.2 上手Trainjob
- 1.5.3 使用GPU
- 1.5.4 使用FDS
- 1.5.5 使用Fuse
- 1.5.6 Trainjob高级功能
- 1.5.6.1 分布式训练
- 1.5.6.2 使用前置/后置命令
- 1.5.6.3 自动超参数调优
- 1.5.6.4 自动超参数调优Hpjob
- 1.5.6.5 自动超参数调优Hpjob
- 1.5.6.6 使用自定义镜像
- 1.5.6.7 使用TensorFlow模板应用
- 1.5.6.8 使用HDFS
- 1.5.6.9 使用HDFS FUSE
- 1.6 ModelService功能
- 1.6.1 模型服务使用流程
- 1.6.2 TensorFlow Serving介绍
- 1.6.3 使用GPU模型服务
- 1.6.4 使用多副本和负载均衡
- 1.6.5 在线服务的模型升级
- 1.6.6 模型服务监控
- 1.6.7 使用前置命令和后置命令
- 1.6.8 定制模型服务Docker镜像
- 1.6.9 使用客户端预测
- 1.6.9.1 使用通用gRPC客户端
- 1.6.9.2 使用Python客户端
- 1.6.9.3 使用Java客户端
- 1.6.9.4 使用Scala客户端
- 1.6.9.5 使用Golang客户端
- 1.6.9.6 使用C++客户端
- 1.7 DevEnv功能
- 1.7.1 开发环境使用流程
- 1.7.2 使用命令行管理开发环境
- 1.7.3 使用WEB控制台管理开发环境
- 1.7.4 高级功能
- 1.7.4.1 使用GPU开发环境
- 1.7.4.2 使用FDS FUSE存储
- 1.7.4.3 使用HDFS存储
- 1.7.4.4 使用HDFS FUSE存储
- 1.7.4.5 网络和安全
- 1.7.4.6 监控
- 1.7.4.7 定制开发环境Docker镜像
- 1.7.5 最佳实践
- 1.8 使用率监控
- 1.8.1 GPU使用率监控
- 1.9 TensorboardService功能
- 1.9.1 TensorBoard使用流程
- 1.9.2 TensorBoard介绍
- 1.10 API文档
- 1.10.1 签名规范
- 1.10.2 API文档
- 1.11 问题反馈
- 1.11.1 FAQ
- 1.11.2 技术支持
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
1.6.8 定制模型服务Docker镜像
简介
Xiaomi Cloud-ML支持Bring Your Own Image功能,使用方法和 定制训练任务Docker镜像 相同。
使用示例
用户创建模型服务时指定Docker镜像地址即可。
cloudml models create -n linear -v v1 -u fds://cloud-ml/linear -d cloudml/tensorflow:1.0.0
定制镜像
如果需要定制镜像,我们对模型服务容器的启动进行了封装,用户构建的Docker镜像需要符合一些约定,同时镜像镜像最好能暴露在公网允许匿名下载。
Docker镜像启动命令如下,并且会把AKSK和FDS endpoint作为环境变量传入,并且mount GPU相关的设备目录,运行的参数如下。
"/model_service.py", model_service.model_name, model_service.model_uri, model_service.model_version
最简单的镜像只有一个文件,在本地编写 model_service.py
,注意需要 chmod +x
添加可执行权限。
#!/usr/bin/env python
import SimpleHTTPServer
import SocketServer
def main():
PORT = 9000
Handler = SimpleHTTPServer.SimpleHTTPRequestHandler
httpd = SocketServer.TCPServer(("", PORT), Handler)
print "serving at port", PORT
httpd.serve_forever()
if __name__ == "__main__":
main()
然后编写Dockerfile,只需要保证安装了model_service.py需要的依赖即可,基于Xiaomi Cloud-ML官方镜像可以获得更快的下载速度但不是必须的。
FROM cloud-ml/dev-tensorflow-cpu:0.12.0-xm1.0.0
ADD ./model_service.py /
EXPOSE 9000
CMD /model_service.py
然后我们可以在本地build这个容器镜像。
sudo docker build -t cloudml/http_model_service .
现在本地模型服务端的运行参数,测试命令如下,然后访问本地的9000端口看服务是否正常。
sudo docker run -it -p 9000:9000 cloudml/http_model_service "/model_service.py" "mymodel" "fds://foo/bar" "v1"
参数介绍
-d
表示用户指定的Docker镜像地址,注意不可与-F
和-V
参数同时使用。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论