返回介绍

solution / 0400-0499 / 0445.Add Two Numbers II / README_EN

发布于 2024-06-17 01:04:00 字数 9079 浏览 0 评论 0 收藏 0

445. Add Two Numbers II

中文文档

Description

You are given two non-empty linked lists representing two non-negative integers. The most significant digit comes first and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.

 

Example 1:

Input: l1 = [7,2,4,3], l2 = [5,6,4]
Output: [7,8,0,7]

Example 2:

Input: l1 = [2,4,3], l2 = [5,6,4]
Output: [8,0,7]

Example 3:

Input: l1 = [0], l2 = [0]
Output: [0]

 

Constraints:

  • The number of nodes in each linked list is in the range [1, 100].
  • 0 <= Node.val <= 9
  • It is guaranteed that the list represents a number that does not have leading zeros.

 

Follow up: Could you solve it without reversing the input lists?

Solutions

Solution 1

# Definition for singly-linked list.
# class ListNode:
#   def __init__(self, val=0, next=None):
#     self.val = val
#     self.next = next
class Solution:
  def addTwoNumbers(
    self, l1: Optional[ListNode], l2: Optional[ListNode]
  ) -> Optional[ListNode]:
    s1, s2 = [], []
    while l1:
      s1.append(l1.val)
      l1 = l1.next
    while l2:
      s2.append(l2.val)
      l2 = l2.next
    dummy = ListNode()
    carry = 0
    while s1 or s2 or carry:
      s = (0 if not s1 else s1.pop()) + (0 if not s2 else s2.pop()) + carry
      carry, val = divmod(s, 10)
      # node = ListNode(val, dummy.next)
      # dummy.next = node
      dummy.next = ListNode(val, dummy.next)
    return dummy.next
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *   int val;
 *   ListNode next;
 *   ListNode() {}
 *   ListNode(int val) { this.val = val; }
 *   ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
  public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
    Deque<Integer> s1 = new ArrayDeque<>();
    Deque<Integer> s2 = new ArrayDeque<>();
    for (; l1 != null; l1 = l1.next) {
      s1.push(l1.val);
    }
    for (; l2 != null; l2 = l2.next) {
      s2.push(l2.val);
    }
    ListNode dummy = new ListNode();
    int carry = 0;
    while (!s1.isEmpty() || !s2.isEmpty() || carry != 0) {
      int s = (s1.isEmpty() ? 0 : s1.pop()) + (s2.isEmpty() ? 0 : s2.pop()) + carry;
      // ListNode node = new ListNode(s % 10, dummy.next);
      // dummy.next = node;
      dummy.next = new ListNode(s % 10, dummy.next);
      carry = s / 10;
    }
    return dummy.next;
  }
}
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *   int val;
 *   ListNode *next;
 *   ListNode() : val(0), next(nullptr) {}
 *   ListNode(int x) : val(x), next(nullptr) {}
 *   ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
  ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
    stack<int> s1;
    stack<int> s2;
    for (; l1; l1 = l1->next) s1.push(l1->val);
    for (; l2; l2 = l2->next) s2.push(l2->val);
    ListNode* dummy = new ListNode();
    int carry = 0;
    while (!s1.empty() || !s2.empty() || carry) {
      int s = carry;
      if (!s1.empty()) {
        s += s1.top();
        s1.pop();
      }
      if (!s2.empty()) {
        s += s2.top();
        s2.pop();
      }
      // ListNode* node = new ListNode(s % 10, dummy->next);
      // dummy->next = node;
      dummy->next = new ListNode(s % 10, dummy->next);
      carry = s / 10;
    }
    return dummy->next;
  }
};
/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *   Val int
 *   Next *ListNode
 * }
 */
func addTwoNumbers(l1 *ListNode, l2 *ListNode) *ListNode {
  s1, s2 := arraystack.New(), arraystack.New()
  for l1 != nil {
    s1.Push(l1.Val)
    l1 = l1.Next
  }
  for l2 != nil {
    s2.Push(l2.Val)
    l2 = l2.Next
  }
  carry, dummy := 0, new(ListNode)
  for !s1.Empty() || !s2.Empty() || carry > 0 {
    s := carry
    v, ok := s1.Pop()
    if ok {
      s += v.(int)
    }
    v, ok = s2.Pop()
    if ok {
      s += v.(int)
    }
    // node := &ListNode{s % 10, dummy.Next}
    // dummy.Next = node
    dummy.Next = &ListNode{s % 10, dummy.Next}
    carry = s / 10
  }
  return dummy.Next
}
/**
 * Definition for singly-linked list.
 * class ListNode {
 *   val: number
 *   next: ListNode | null
 *   constructor(val?: number, next?: ListNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.next = (next===undefined ? null : next)
 *   }
 * }
 */

function addTwoNumbers(l1: ListNode | null, l2: ListNode | null): ListNode | null {
  const s1: number[] = [];
  const s2: number[] = [];
  for (; l1; l1 = l1.next) {
    s1.push(l1.val);
  }
  for (; l2; l2 = l2.next) {
    s2.push(l2.val);
  }
  const dummy = new ListNode();
  let carry = 0;
  while (s1.length || s2.length || carry) {
    const s = (s1.pop() ?? 0) + (s2.pop() ?? 0) + carry;
    // const node = new ListNode(s % 10, dummy.next);
    // dummy.next = node;
    dummy.next = new ListNode(s % 10, dummy.next);
    carry = Math.floor(s / 10);
  }
  return dummy.next;
}
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
//   pub val: i32,
//   pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
//   #[inline]
//   fn new(val: i32) -> Self {
//   ListNode {
//     next: None,
//     val
//   }
//   }
// }
impl Solution {
  fn reverse(mut head: Option<Box<ListNode>>) -> Option<Box<ListNode>> {
    let mut pre = None;
    while let Some(mut node) = head {
      let next = node.next.take();
      node.next = pre.take();
      pre = Some(node);
      head = next;
    }
    pre
  }

  pub fn add_two_numbers(
    mut l1: Option<Box<ListNode>>,
    mut l2: Option<Box<ListNode>>
  ) -> Option<Box<ListNode>> {
    l1 = Self::reverse(l1);
    l2 = Self::reverse(l2);
    let mut dummy = Some(Box::new(ListNode::new(0)));
    let mut cur = &mut dummy;
    let mut sum = 0;
    while l1.is_some() || l2.is_some() || sum != 0 {
      if let Some(node) = l1 {
        sum += node.val;
        l1 = node.next;
      }
      if let Some(node) = l2 {
        sum += node.val;
        l2 = node.next;
      }
      cur.as_mut().unwrap().next = Some(Box::new(ListNode::new(sum % 10)));
      cur = &mut cur.as_mut().unwrap().next;
      sum /= 10;
    }
    Self::reverse(dummy.unwrap().next.take())
  }
}

Solution 2

// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
//   pub val: i32,
//   pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
//   #[inline]
//   fn new(val: i32) -> Self {
//   ListNode {
//     next: None,
//     val
//   }
//   }
// }
impl Solution {
  fn create_stack(mut head: Option<Box<ListNode>>) -> Vec<i32> {
    let mut res = vec![];
    while let Some(node) = head {
      res.push(node.val);
      head = node.next;
    }
    res
  }

  pub fn add_two_numbers(
    l1: Option<Box<ListNode>>,
    l2: Option<Box<ListNode>>
  ) -> Option<Box<ListNode>> {
    let mut s1 = Self::create_stack(l1);
    let mut s2 = Self::create_stack(l2);

    let mut dummy = Box::new(ListNode::new(0));
    let mut carry = 0;
    while !s1.is_empty() || !s2.is_empty() || carry != 0 {
      if let Some(val) = s1.pop() {
        carry += val;
      }
      if let Some(val) = s2.pop() {
        carry += val;
      }
      dummy.next = Some(
        Box::new(ListNode {
          val: carry % 10,
          next: dummy.next.take(),
        })
      );
      carry /= 10;
    }
    dummy.next.take()
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文