返回介绍

solution / 0100-0199 / 0144.Binary Tree Preorder Traversal / README_EN

发布于 2024-06-17 01:04:04 字数 16306 浏览 0 评论 0 收藏 0

144. Binary Tree Preorder Traversal

中文文档

Description

Given the root of a binary tree, return _the preorder traversal of its nodes' values_.

 

Example 1:

Input: root = [1,null,2,3]
Output: [1,2,3]

Example 2:

Input: root = []
Output: []

Example 3:

Input: root = [1]
Output: [1]

 

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100

 

Follow up: Recursive solution is trivial, could you do it iteratively?

Solutions

Solution 1: Recursive Traversal

We first visit the root node, then recursively traverse the left and right subtrees.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree. The space complexity mainly depends on the stack space used for recursive calls.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
    def dfs(root):
      if root is None:
        return
      ans.append(root.val)
      dfs(root.left)
      dfs(root.right)

    ans = []
    dfs(root)
    return ans
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  private List<Integer> ans = new ArrayList<>();

  public List<Integer> preorderTraversal(TreeNode root) {
    dfs(root);
    return ans;
  }

  private void dfs(TreeNode root) {
    if (root == null) {
      return;
    }
    ans.add(root.val);
    dfs(root.left);
    dfs(root.right);
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  vector<int> preorderTraversal(TreeNode* root) {
    vector<int> ans;
    function<void(TreeNode*)> dfs = [&](TreeNode* root) {
      if (!root) {
        return;
      }
      ans.push_back(root->val);
      dfs(root->left);
      dfs(root->right);
    };
    dfs(root);
    return ans;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (ans []int) {
  var dfs func(*TreeNode)
  dfs = func(root *TreeNode) {
    if root == nil {
      return
    }
    ans = append(ans, root.Val)
    dfs(root.Left)
    dfs(root.Right)
  }
  dfs(root)
  return
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function preorderTraversal(root: TreeNode | null): number[] {
  const ans: number[] = [];
  const dfs = (root: TreeNode | null) => {
    if (!root) {
      return;
    }
    ans.push(root.val);
    dfs(root.left);
    dfs(root.right);
  };
  dfs(root);
  return ans;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//   TreeNode {
//     val,
//     left: None,
//     right: None
//   }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
  fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, ans: &mut Vec<i32>) {
    if root.is_none() {
      return;
    }
    let node = root.as_ref().unwrap().borrow();
    ans.push(node.val);
    Self::dfs(&node.left, ans);
    Self::dfs(&node.right, ans);
  }

  pub fn preorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
    let mut ans = vec![];
    Self::dfs(&root, &mut ans);
    ans
  }
}

Solution 2: Stack Implementation for Non-Recursive Traversal

The idea of using a stack to implement non-recursive traversal is as follows:

  1. Define a stack $stk$, and first push the root node into the stack.
  2. If the stack is not empty, pop a node from the stack each time.
  3. Process the node.
  4. First push the right child of the node into the stack, then push the left child of the node into the stack (if there are child nodes).
  5. Repeat steps 2-4.
  6. Return the result.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree. The space complexity mainly depends on the stack space.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
    ans = []
    if root is None:
      return ans
    stk = [root]
    while stk:
      node = stk.pop()
      ans.append(node.val)
      if node.right:
        stk.append(node.right)
      if node.left:
        stk.append(node.left)
    return ans
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public List<Integer> preorderTraversal(TreeNode root) {
    List<Integer> ans = new ArrayList<>();
    if (root == null) {
      return ans;
    }
    Deque<TreeNode> stk = new ArrayDeque<>();
    stk.push(root);
    while (!stk.isEmpty()) {
      TreeNode node = stk.pop();
      ans.add(node.val);
      if (node.right != null) {
        stk.push(node.right);
      }
      if (node.left != null) {
        stk.push(node.left);
      }
    }
    return ans;
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  vector<int> preorderTraversal(TreeNode* root) {
    vector<int> ans;
    if (!root) {
      return ans;
    }
    stack<TreeNode*> stk;
    stk.push(root);
    while (stk.size()) {
      auto node = stk.top();
      stk.pop();
      ans.push_back(node->val);
      if (node->right) {
        stk.push(node->right);
      }
      if (node->left) {
        stk.push(node->left);
      }
    }
    return ans;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (ans []int) {
  if root == nil {
    return
  }
  stk := []*TreeNode{root}
  for len(stk) > 0 {
    node := stk[len(stk)-1]
    stk = stk[:len(stk)-1]
    ans = append(ans, node.Val)
    if node.Right != nil {
      stk = append(stk, node.Right)
    }
    if node.Left != nil {
      stk = append(stk, node.Left)
    }
  }
  return
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function preorderTraversal(root: TreeNode | null): number[] {
  const ans: number[] = [];
  if (!root) {
    return ans;
  }
  const stk: TreeNode[] = [root];
  while (stk.length) {
    const { left, right, val } = stk.pop();
    ans.push(val);
    right && stk.push(right);
    left && stk.push(left);
  }
  return ans;
}

Solution 3: Morris Preorder Traversal

Morris traversal does not require a stack, and its space complexity is $O(1)$. The core idea is:

Traverse the binary tree nodes,

  1. If the left subtree of the current node root is empty, add the current node value to the result list $ans$, and update the current node to root.right.
  2. If the left subtree of the current node root is not empty, find the rightmost node pre of the left subtree (which is the predecessor of the root node in inorder traversal):
    • If the right subtree of the predecessor node pre is empty, add the current node value to the result list $ans$, then point the right subtree of the predecessor node to the current node root, and update the current node to root.left.
    • If the right subtree of the predecessor node pre is not empty, point the right subtree of the predecessor node to null (i.e., disconnect pre and root), and update the current node to root.right.
  3. Repeat the above steps until the binary tree node is null, and the traversal ends.

The time complexity is $O(n)$, where $n$ is the number of nodes in the binary tree. The space complexity is $O(1)$.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
    ans = []
    while root:
      if root.left is None:
        ans.append(root.val)
        root = root.right
      else:
        prev = root.left
        while prev.right and prev.right != root:
          prev = prev.right
        if prev.right is None:
          ans.append(root.val)
          prev.right = root
          root = root.left
        else:
          prev.right = None
          root = root.right
    return ans
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public List<Integer> preorderTraversal(TreeNode root) {
    List<Integer> ans = new ArrayList<>();
    while (root != null) {
      if (root.left == null) {
        ans.add(root.val);
        root = root.right;
      } else {
        TreeNode prev = root.left;
        while (prev.right != null && prev.right != root) {
          prev = prev.right;
        }
        if (prev.right == null) {
          ans.add(root.val);
          prev.right = root;
          root = root.left;
        } else {
          prev.right = null;
          root = root.right;
        }
      }
    }
    return ans;
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  vector<int> preorderTraversal(TreeNode* root) {
    vector<int> ans;
    while (root) {
      if (!root->left) {
        ans.push_back(root->val);
        root = root->right;
      } else {
        TreeNode* prev = root->left;
        while (prev->right && prev->right != root) {
          prev = prev->right;
        }
        if (!prev->right) {
          ans.push_back(root->val);
          prev->right = root;
          root = root->left;
        } else {
          prev->right = nullptr;
          root = root->right;
        }
      }
    }
    return ans;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (ans []int) {
  for root != nil {
    if root.Left == nil {
      ans = append(ans, root.Val)
      root = root.Right
    } else {
      prev := root.Left
      for prev.Right != nil && prev.Right != root {
        prev = prev.Right
      }
      if prev.Right == nil {
        ans = append(ans, root.Val)
        prev.Right = root
        root = root.Left
      } else {
        prev.Right = nil
        root = root.Right
      }
    }
  }
  return
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function preorderTraversal(root: TreeNode | null): number[] {
  const ans: number[] = [];
  while (root) {
    const { left, right, val } = root;
    if (!left) {
      ans.push(val);
      root = right;
    } else {
      let prev = left;
      while (prev.right && prev.right != root) {
        prev = prev.right;
      }
      if (!prev.right) {
        ans.push(val);
        prev.right = root;
        root = root.left;
      } else {
        prev.right = null;
        root = root.right;
      }
    }
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文