返回介绍

solution / 0900-0999 / 0910.Smallest Range II / README_EN

发布于 2024-06-17 01:03:33 字数 4358 浏览 0 评论 0 收藏 0

910. Smallest Range II

中文文档

Description

You are given an integer array nums and an integer k.

For each index i where 0 <= i < nums.length, change nums[i] to be either nums[i] + k or nums[i] - k.

The score of nums is the difference between the maximum and minimum elements in nums.

Return _the minimum score of _nums_ after changing the values at each index_.

 

Example 1:

Input: nums = [1], k = 0
Output: 0
Explanation: The score is max(nums) - min(nums) = 1 - 1 = 0.

Example 2:

Input: nums = [0,10], k = 2
Output: 6
Explanation: Change nums to be [2, 8]. The score is max(nums) - min(nums) = 8 - 2 = 6.

Example 3:

Input: nums = [1,3,6], k = 3
Output: 3
Explanation: Change nums to be [4, 6, 3]. The score is max(nums) - min(nums) = 6 - 3 = 3.

 

Constraints:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 104
  • 0 <= k <= 104

Solutions

Solution 1: Greedy + Enumeration

According to the problem requirements, we need to find the minimum difference between the maximum and minimum values in the array. Each element can be increased or decreased by $k$, so we can divide the elements in the array into two parts, one part increased by $k$ and the other part decreased by $k$. Therefore, we should decrease the larger values in the array by $k$ and increase the smaller values by $k$ to ensure the minimum difference between the maximum and minimum values.

Therefore, we can first sort the array, then enumerate each element in the array, divide it into two parts, one part increased by $k$ and the other part decreased by $k$, and calculate the difference between the maximum and minimum values. Finally, take the minimum value among all differences.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$, where $n$ is the length of the array.

class Solution:
  def smallestRangeII(self, nums: List[int], k: int) -> int:
    nums.sort()
    ans = nums[-1] - nums[0]
    for i in range(1, len(nums)):
      mi = min(nums[0] + k, nums[i] - k)
      mx = max(nums[i - 1] + k, nums[-1] - k)
      ans = min(ans, mx - mi)
    return ans
class Solution {
  public int smallestRangeII(int[] nums, int k) {
    Arrays.sort(nums);
    int n = nums.length;
    int ans = nums[n - 1] - nums[0];
    for (int i = 1; i < n; ++i) {
      int mi = Math.min(nums[0] + k, nums[i] - k);
      int mx = Math.max(nums[i - 1] + k, nums[n - 1] - k);
      ans = Math.min(ans, mx - mi);
    }
    return ans;
  }
}
class Solution {
public:
  int smallestRangeII(vector<int>& nums, int k) {
    sort(nums.begin(), nums.end());
    int n = nums.size();
    int ans = nums[n - 1] - nums[0];
    for (int i = 1; i < n; ++i) {
      int mi = min(nums[0] + k, nums[i] - k);
      int mx = max(nums[i - 1] + k, nums[n - 1] - k);
      ans = min(ans, mx - mi);
    }
    return ans;
  }
};
func smallestRangeII(nums []int, k int) int {
  sort.Ints(nums)
  n := len(nums)
  ans := nums[n-1] - nums[0]
  for i := 1; i < n; i++ {
    mi := min(nums[0]+k, nums[i]-k)
    mx := max(nums[i-1]+k, nums[n-1]-k)
    ans = min(ans, mx-mi)
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文