- 第一章 SystemVerilog导论
- 第二章 文本值
- 第三章 数据类型
- 第四章 数组
- 第五章 数据声明
- 第六章 属性
- 第七章 操作符与表达式
- 第八章 过程语句和控制流
- 第九章 进程
- 第十章 任务与函数
- 第十一章 类
- 第十二章 随机约束
- 第十三章 进程间的同步与通信
- 第十四章 调度语义
- 第十五章 时钟控制块
- 第十六章 程序块
- 第十七章 断言
- 第十八章 层次
- 第十九章 接口
- 第二十章 覆盖
- 第二十一章 参数
- 第二十二章 配置库
- 第二十三章 系统任务与系统函数
- 23.1 简介(一般信息)
- 23.2 确立时的typeof函数
- 23.3 typename函数
- 23.4 表达式尺寸系统函数
- 23.5 范围系统函数
- 23.6 Shortreal转换
- 23.7 数组查询系统函数
- 23.8 断言严重性系统任务
- 23.9 断言控制系统任务
- 23.10 断言系统函数
- 23.11 随机数系统函数
- 23.12 程序控制
- 23.13 覆盖系统函数
- 23.14 对Verilog-2001系统任务的增强
- 23.15 $readmemb与$readmemh
- 23.16 $writememb and $writememh
- 23.17 File format considerations for multi-dimensional unpacked arrays
- 23.18 System task arguments for multi-dimensional unpacked arrays
- 第二十四章 VCD数据
- 第二十五章 编译器指令
- 第二十六章 考虑从SystemVerilog中删除的功能
- 第二十七章 直接编程接口(DPI)
- 27.1 概述
- 27.2 Two layers of the DPI
- 27.3 Global name space of imported and exported functions
- 27.4 导入的任务和函数
- 27.5 Calling imported functions
- 27.6 Exported functions
- 27.7 Exported tasks
- 27.8 Disabling DPI tasks and functions
- 第二十八章 SystemVerilog断言API
- 第二十九章 SystemVerilog覆盖API
- 29.1 需求
- 29.2 SystemVerilog real-time coverage access
- 29.3 FSM recognition
- 29.3.1 Specifying the signal that holds the current state
- 29.3.2 Specifying the part-select that holds the current state
- 29.3.3 Specifying the concatenation that holds the current state
- 29.3.4 Specifying the signal that holds the next state
- 29.3.5 Specifying the current and next state signals in the same declaration
- 29.3.6 Specifying the possible states of the FSM
- 29.3.7 Pragmas in one-line comments
- 29.3.8 Example
- 29.4 VPI coverage extensions
- 第三十章 SystemVerilog数据读API
- 30.1 简介(一般信息)
- 30.2 需求
- 30.3 Extensions to VPI enumerations
- 30.4 VPI object type additions
- 30.5 Object model diagrams
- 30.6 Usage extensions to VPI routines
- 30.7 VPI routines added in SystemVerilog
- 30.8 Reading data
- 30.9 Optionally unloading the data
- 30.10 Reading data from multiple databases and/or different read library providers
- 30.11 VPI routines extended in SystemVerilog
- 30.12 VPI routines added in SystemVerilog
- 30.12.1 VPI reader routines
- 第三十一章 SystemVerilog VPI Object Model
- 31.1 简介(一般信息)
- 31.2 Instance
- 31.3 Interface
- 31.4 Program
- 31.5 Module (supersedes IEEE 1364-2001 26.6.1)
- 31.6 Modport
- 31.7 Interface tf decl
- 31.8 Ports (supersedes IEEE 1364-2001 26.6.5)
- 31.9 Ref Obj
- 31.9.1 Examples
- 31.10 Variables (supersedes IEEE 1364-2001 section 26.6.8)
- 31.11 Var Select (supersedes IEEE 1364-2001 26.6.8)
- 31.12 Typespec
- 31.13 Variable Drivers and Loads (supersedes IEEE 1364-2001 26.6.23)
- 31.14 Instance Arrays (supersedes IEEE 1364-2001 26.6.2)
- 31.15 Scope (supersedes IEEE 1364-2001 26.6.3)
- 31.16 IO Declaration (supersedes IEEE 1364-2001 26.6.4)
- 31.17 Clocking Block
- 31.18 Class Object Definition
- 31.19 Constraint, constraint ordering, distribution,
- 31.20 Constraint expression
- 31.21 Class Variables
- 31.22 Structure/Union
- 31.23 Named Events (supersedes IEEE 1364-2001 26.6.11)
- 31.24 Task, Function Declaration (supersedes IEEE 1364-2001 26.6.18)
- 31.25 Alias Statement
- 31.25.1 Examples
- 31.26 Frames (supersedes IEEE 1364-2001 26.6.20)
- 31.27 Threads
- 31.28 tf call (supersedes IEEE 1364-2001 26.6.19)
- 31.29 Module path, path term (supersedes IEEE 1364-2001 26.6.15)
- 31.30 Concurrent assertions
- 31.31 Property Decl
- 31.32 Property Specification
- 31.33 Multiclock Sequence Expression
- 31.34 Sequence Declaration
- 31.35 Sequence Expression
- 31.36 Attribute (supersedes IEEE 1364-2001 26.6.42)
- 31.37 Atomic Statement (supersedes IEEE 1364-2001 26.6.27)
- 31.38 If, if else, return, case, do while (supersedes IEEE 1364-2001 26.6.35, 26.6.36)
- 31.39 waits, disables, expect, foreach (supersedes IEEE 1364 26.6.38)
- 31.40 Simple expressions (supersedes IEEE 1364-2001 26.6.25)
- 31.41 Expressions (supersedes IEEE 1364-2001 26.6.26)
- 31.42 Event control (supersedes IEEE 1364-2001 26.6.30)
- 31.43 Event stmt (supersedes IEEE 1364-2001 26.6.27)
- 31.44 Process (supersedes IEEE 1364-2001 26.6.27)
- 31.45 Assignment (supersedes IEEE 1364-2001 26.6.28)
- 附录A 形式语法
- A.1 源文本
- A.2 声明
- A.3 Primitive instances
- A.4 Module, interface and generated instantiation
- A.5 UDP declaration and instantiation
- A.6 Behavioral statements
- A.6.1 Continuous assignment and net alias statements
- A.6.2 Procedural blocks and assignments
- A.6.3 Parallel and sequential blocks
- A.6.4 Statements
- A.6.5 Timing control statements
- A.6.6 Conditional statements
- A.6.7 Case statements
- A.6.8 Looping statements
- A.6.9 Subroutine call statements
- A.6.10 Assertion statements
- A.6.11 Clocking block
- A.6.12 Randsequence
- A.7 Specify section
- A.8 Expressions
- A.9 General
- A.10 Footnotes (normative)
- 附录B 关键字
- 附录C 标准包
- 附录D 链表
- 附录E DPI C-layer
- E.1 概述
- E.2 Naming conventions
- E.3 Portability
- E.4 Include files
- E.5 Semantic constraints
- E.6 Data types
- E.7 Argument passing modes
- E.8 Context tasks and functions
- E.9 Include files
- E.10 Arrays
- E.11 Open arrays
- E.11.1 Actual ranges
- E.11.2 Array querying functions
- E.11.3 Access functions
- E.11.4 Access to the actual representation
- E.11.5 Access to elements via canonical representation
- E.11.6 Access to scalar elements (bit and logic)
- E.11.7 Access to array elements of other types
- E.11.8 Example 4— two-dimensional open array
- E.11.9 Example 5 — open array
- E.11.10 Example 6 — access to packed arrays
- E.11.11 Example 7 — binary compatible calls of exported functions
- 附录F 包含文件
- 附录G 包含外部语言代码
- 附录H 并发断言的形式语义
- 附录I svvpiuser.h
- 附录J 术语表
- 附录K 参考书目
- 其他
E.8.3 Working with DPI context tasks and functions in C code
DPI defines a small set of functions to help programmers work with DPI context tasks and functions. The term scope is used in the task or function names for consistency with other SystemVerilog terminology. The terms scope and context are equivalent for DPI tasks and functions.
There are functions that allow the user to retrieve and manipulate the current operational scope. It is an error to use these functions with any C code that is not executing under a call to a DPI context imported task or function.
There are also functions that provide users with the power to set data specific to C models into the SystemVerilog simulator for later retrieval. These are the “put” and “get” user data functions, which are similar to facilities provided in VPI and PLI.
The put and get user data functions are flexible and allow for a number of use models. Users might wish to share user data across multiple context imported functions defined in the same SV scope. Users might wish to have unique data storage on a per function basis. Shared or unique data storage is controllable by a userdefined key.
To achieve shared data storage, a related set of context imported tasks and functions should all use the same userKey. To achieve unique data storage, a context import task or function should use a unique key. Note that it is a requirement on the user that such a key be truly unique from all other keys that could possibly be used by C code. This includes completely unknown C code that could be running in the same simulation. It is suggested that taking addresses of static C symbols (such as a function pointer, or address of some static C data) always be done for user key generation. Generating keys based on arbitrary integers is not a safe practice.
Note that it is never possible to share user data storage across different contexts. For example, if a Verilog module m declares a context imported task or function f, and m is instantiated more than once in the System- Verilog design, then f shall execute under different values of svScope. No such executing instances of f can share user data with each other, at least not using the system-provided user data storage area accessible via svPutUserData().
A user wanting to share a data area across multiple contexts must do so by allocating the common data area, then storing the pointer to it individually for each of the contexts in question via multiple calls to svPutUser- Data(). This is because, although a common user key can be used, the data must be associated with the individual scopes (denoted by svScope) of those contexts.
/* Functions for working with DPI context functions */ /* Retrieve the active instance scope currently associated with the executing * imported function. * Unless a prior call to svSetScope has occurred, this is the scope of the * function’s declaration site, not call site. * The return value is undefined if this function is invoked from a non-context * imported function. */ svScope svGetScope(); /* Set context for subsequent export function execution. * This function must be called before calling an export function, unless * the export function is called while executing an extern function. In that * case the export function shall inherit the scope of the surrounding extern * function. This is known as the “default scope”. * The return is the previous active scope (as per svGetScope) */ svScope svSetScope(const svScope scope); /* Gets the fully qualified name of a scope handle */ const char* svGetNameFromScope(const svScope); /* Retrieve svScope to instance scope of an arbitrary function declaration. * (can be either module, program, interface, or generate scope) * The return value shall be NULL for unrecognized scope names. */ svScope svGetScopeFromName(const char* scopeName); /* Store an arbitrary user data pointer for later retrieval by svGetUserData() * The userKey is generated by the user. It must be guaranteed by the user to * be unique from all other userKey’s for all unique data storage requirements * It is recommended that the address of static functions or variables in the * user’s C code be used as the userKey. * It is illegal to pass in NULL values for either the scope or userData * arguments. It is also an error to call svPutUserData() with an invalid * svScope. This function returns -1 for all error cases, 0 upon success. It is * suggested that userData values of 0 (NULL) not be used as otherwise it can * be impossible to discern error status returns when calling svGetUserData() */ int svPutUserData(const svScope scope, void *userKey, void* userData); /* Retrieve an arbitrary user data pointer that was previously * stored by a call to svPutUserData(). See the comment above * svPutUserData() for an explanation of userKey, as well as * restrictions on NULL and illegal svScope and userKey values. * This function returns NULL for all error cases, and a non-Null * user data pointer upon success. * This function also returns NULL in the event that a prior call * to svPutUserData() was never made. */ void* svGetUserData(const svScope scope, void* userKey); /* Returns the file and line number in the SV code from which the extern call * was made. If this information available, returns TRUE and updates fileName * and lineNumber to the appropriate values. Behavior is unpredictable if * fileName or lineNumber are not appropriate pointers. If this information is * not available return FALSE and contents of fileName and lineNumber not * modified. Whether this information is available or not is implementation * specific. Note that the string provided (if any) is owned by the SV * implementation and is valid only until the next call to any SV function. * Applications must not modify this string or free it */ int svGetCallerInfo(char **fileName, int *lineNumber);
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论