- Logstash
- Logstash - 入门示例
- 入门示例 - 下载安装
- 入门示例 - hello world
- 入门示例 - 配置语法
- 入门示例 - plugin的安装
- 入门示例 - 长期运行
- Logstash - 插件配置
- 插件配置 - input配置
- input配置 - file
- input配置 - stdin
- input配置 - syslog
- input配置 - tcp
- 插件配置 - codec配置
- codec配置 - json
- codec配置 - multiline
- codec配置 - collectd
- codec配置 - netflow
- 插件配置 - filter配置
- filter配置 - date
- filter配置 - grok
- filter配置 - dissect
- filter配置 - geoip
- filter配置 - json
- filter配置 - kv
- filter配置 - metrics
- filter配置 - mutate
- filter配置 - ruby
- filter配置 - split
- filter配置 - elapsed
- 插件配置 - output配置
- output配置 - elasticsearch
- output配置 - email
- output配置 - exec
- output配置 - file
- output配置 - nagios
- output配置 - statsd
- output配置 - stdout
- output配置 - tcp
- output配置 - hdfs
- Logstash - 场景示例
- 场景示例 - nginx访问日志
- 场景示例 - nginx错误日志
- 场景示例 - postfix日志
- 场景示例 - ossec日志
- 场景示例 - windows系统日志
- 场景示例 - Java日志
- 场景示例 - MySQL慢查询日志
- Logstash - 性能与测试
- 性能与测试 - generator方式
- 性能与测试 - 监控方案
- 监控方案 - logstash-input-heartbeat方式
- 监控方案 - jmx启动参数方式
- 监控方案 - API方式
- Logstash - 扩展方案
- 扩展方案 - 通过redis传输
- 扩展方案 - 通过kafka传输
- 扩展方案 - AIX 平台上的logstash-forwarder-java
- 扩展方案 - rsyslog
- 扩展方案 - nxlog
- 扩展方案 - heka
- 扩展方案 - fluent
- 扩展方案 - Message::Passing
- Logstash - 源码解析
- 源码解析 - pipeline流程
- 源码解析 - Event的生成
- Logstash - 插件开发
- 插件开发 - utmp插件示例
- Beats
- Beats - filebeat
- Beats - packetbeat网络流量分析
- Beats - metricbeat
- Beats - winlogbeat
- ElasticSearch
- ElasticSearch - 架构原理
- 架构原理 - segment、buffer和translog对实时性的影响
- 架构原理 - segment merge对写入性能的影响
- 架构原理 - routing和replica的读写过程
- 架构原理 - shard的allocate控制
- 架构原理 - 自动发现的配置
- ElasticSearch - 接口使用示例
- 接口使用示例 - 增删改查操作
- 接口使用示例 - 搜索请求
- 接口使用示例 - Painless脚本
- 接口使用示例 - reindex接口
- ElasticSearch - 性能优化
- 性能优化 - bulk提交
- 性能优化 - gateway配置
- 性能优化 - 集群状态维护
- 性能优化 - 缓存
- 性能优化 - fielddata
- 性能优化 - curator工具
- 性能优化 - profile接口
- ElasticSearch - rally测试方案
- ElasticSearch - 多集群互联
- ElasticSearch - 别名的应用
- ElasticSearch - 映射与模板的定制
- ElasticSearch - puppet-elasticsearch模块的使用
- ElasticSearch - 计划内停机升级的操作流程
- ElasticSearch - 镜像备份
- ElasticSearch - rollover和shrink
- ElasticSearch - Ingest节点
- ElasticSearch - Hadoop 集成
- Hadoop 集成 - spark streaming交互
- ElasticSearch - 权限管理
- 权限管理 - Shield
- 权限管理 - Search-Guard 在 Elasticsearch 2.x 上的运用
- ElasticSearch - 监控方案
- 监控方案 - 监控相关接口
- 监控相关接口 - 集群健康状态
- 监控相关接口 - 节点状态
- 监控相关接口 - 索引状态
- 监控相关接口 - 任务管理
- 监控相关接口 - cat 接口的命令行使用
- 监控方案 - 日志记录
- 监控方案 - 实时bigdesk方案
- 监控方案 - cerebro
- 监控方案 - zabbix trapper方案
- ElasticSearch - ES在运维监控领域的其他玩法
- ES在运维监控领域的其他玩法 - percolator接口
- ES在运维监控领域的其他玩法 - watcher报警
- ES在运维监控领域的其他玩法 - ElastAlert
- ES在运维监控领域的其他玩法 - 时序数据库
- ES在运维监控领域的其他玩法 - Grafana
- ES在运维监控领域的其他玩法 - juttle
- ES在运维监控领域的其他玩法 - Etsy的Kale异常检测
- Kibana 5
- Kibana 5 - 安装、配置和运行
- Kibana 5 - 生产环境部署
- Kibana 5 - discover功能
- Kibana 5 - 各visualize功能
- 各visualize功能 - area
- 各visualize功能 - table
- 各visualize功能 - line
- 各visualize功能 - markdown
- 各visualize功能 - metric
- 各visualize功能 - pie
- 各visualize功能 - tile map
- 各visualize功能 - vertical bar
- Kibana 5 - dashboard功能
- Kibana 5 - timelion 介绍
- Kibana 5 - console 介绍
- Kibana 5 - setting功能
- Kibana 5 - 常用sub agg示例
- 常用sub agg示例 - 函数堆栈链分析
- 常用sub agg示例 - 分图统计
- 常用sub agg示例 - TopN的时序趋势图
- 常用sub agg示例 - 响应时间的百分占比趋势图
- 常用sub agg示例 - 响应时间的概率分布在不同时段的相似度对比
- Kibana 5 - 源码解析
- 源码解析 - .kibana索引的数据结构
- 源码解析 - 主页入口
- 源码解析 - discover解析
- 源码解析 - visualize解析
- 源码解析 - dashboard解析
- Kibana 5 - 插件
- 插件 - 可视化开发示例
- 插件 - 后端开发示例
- 插件 - 完整app开发示例
- Kibana 5 - Kibana报表
- 竞品对比
架构原理 - segment merge对写入性能的影响
通过上节内容,我们知道了数据怎么进入 ES 并且如何才能让数据更快的被检索使用。其中用一句话概括了 Lucene 的设计思路就是”开新文件”。从另一个方面看,开新文件也会给服务器带来负载压力。因为默认每 1 秒,都会有一个新文件产生,每个文件都需要有文件句柄,内存,CPU 使用等各种资源。一天有 86400 秒,设想一下,每次请求要扫描一遍 86400 个文件,这个响应性能绝对好不了!
为了解决这个问题,ES 会不断在后台运行任务,主动将这些零散的 segment 做数据归并,尽量让索引内只保有少量的,每个都比较大的,segment 文件。这个过程是有独立的线程来进行的,并不影响新 segment 的产生。归并过程中,索引状态如图 2-7,尚未完成的较大的 segment 是被排除在检索可见范围之外的:
图 2-7
当归并完成,较大的这个 segment 刷到磁盘后,commit 文件做出相应变更,删除之前几个小 segment,改成新的大 segment。等检索请求都从小 segment 转到大 segment 上以后,删除没用的小 segment。这时候,索引里 segment 数量就下降了,状态如图 2-8 所示:
图 2-8
归并线程配置
segment 归并的过程,需要先读取 segment,归并计算,再写一遍 segment,最后还要保证刷到磁盘。可以说,这是一个非常消耗磁盘 IO 和 CPU 的任务。所以,ES 提供了对归并线程的限速机制,确保这个任务不会过分影响到其他任务。
在 5.0 之前,归并线程的限速配置 indices.store.throttle.max_bytes_per_sec
是 20MB。对于写入量较大,磁盘转速较高,甚至使用 SSD 盘的服务器来说,这个限速是明显过低的。对于 Elastic Stack 应用,社区广泛的建议是可以适当调大到 100MB或者更高。
# curl -XPUT http://127.0.0.1:9200/_cluster/settings -d'
{
"persistent" : {
"indices.store.throttle.max_bytes_per_sec" : "100mb"
}
}'
5.0 开始,ES 对此作了大幅度改进,使用了 Lucene 的 CMS(ConcurrentMergeScheduler) 的 auto throttle 机制,正常情况下已经不再需要手动配置 indices.store.throttle.max_bytes_per_sec
了。官方文档中都已经删除了相关介绍,不过从源码中还是可以看到,这个值目前的默认设置是 10240 MB。
归并线程的数目,ES 也是有所控制的。默认数目的计算公式是: Math.min(3, Runtime.getRuntime().availableProcessors() / 2)
。即服务器 CPU 核数的一半大于 3 时,启动 3 个归并线程;否则启动跟 CPU 核数的一半相等的线程数。相信一般做 Elastic Stack 的服务器 CPU 合数都会在 6 个以上。所以一般来说就是 3 个归并线程。如果你确定自己磁盘性能跟不上,可以降低 index.merge.scheduler.max_thread_count
配置,免得 IO 情况更加恶化。
归并策略
归并线程是按照一定的运行策略来挑选 segment 进行归并的。主要有以下几条:
- index.merge.policy.floor_segment
默认 2MB,小于这个大小的 segment,优先被归并。 - index.merge.policy.max_merge_at_once
默认一次最多归并 10 个 segment - index.merge.policy.max_merge_at_once_explicit
默认 forcemerge 时一次最多归并 30 个 segment。 - index.merge.policy.max_merged_segment
默认 5 GB,大于这个大小的 segment,不用参与归并。forcemerge 除外。
根据这段策略,其实我们也可以从另一个角度考虑如何减少 segment 归并的消耗以及提高响应的办法:加大 flush 间隔,尽量让每次新生成的 segment 本身大小就比较大。
forcemerge 接口
既然默认的最大 segment 大小是 5GB。那么一个比较庞大的数据索引,就必然会有为数不少的 segment 永远存在,这对文件句柄,内存等资源都是极大的浪费。但是由于归并任务太消耗资源,所以一般不太选择加大 index.merge.policy.max_merged_segment
配置,而是在负载较低的时间段,通过 forcemerge 接口,强制归并 segment。
# curl -XPOST http://127.0.0.1:9200/logstash-2015-06.10/_forcemerge?max_num_segments=1
由于 forcemerge 线程对资源的消耗比普通的归并线程大得多,所以,绝对不建议对还在写入数据的热索引执行这个操作。这个问题对于 Elastic Stack 来说非常好办,一般索引都是按天分割的。更合适的任务定义方式,请阅读本书稍后的 curator 章节。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论