返回介绍

solution / 2100-2199 / 2117.Abbreviating the Product of a Range / README_EN

发布于 2024-06-17 01:03:09 字数 8242 浏览 0 评论 0 收藏 0

2117. Abbreviating the Product of a Range

中文文档

Description

You are given two positive integers left and right with left <= right. Calculate the product of all integers in the inclusive range [left, right].

Since the product may be very large, you will abbreviate it following these steps:

  1. Count all trailing zeros in the product and remove them. Let us denote this count as C.
    • For example, there are 3 trailing zeros in 1000, and there are 0 trailing zeros in 546.
  2. Denote the remaining number of digits in the product as d. If d > 10, then express the product as <pre>...<suf> where <pre> denotes the first 5 digits of the product, and <suf> denotes the last 5 digits of the product after removing all trailing zeros. If d <= 10, we keep it unchanged.
    • For example, we express 1234567654321 as 12345...54321, but 1234567 is represented as 1234567.
  3. Finally, represent the product as a string "<pre>...<suf>eC".
    • For example, 12345678987600000 will be represented as "12345...89876e5".

Return _a string denoting the abbreviated product of all integers in the inclusive range_ [left, right].

 

Example 1:

Input: left = 1, right = 4
Output: "24e0"
Explanation: The product is 1 × 2 × 3 × 4 = 24.
There are no trailing zeros, so 24 remains the same. The abbreviation will end with "e0".
Since the number of digits is 2, which is less than 10, we do not have to abbreviate it further.
Thus, the final representation is "24e0".

Example 2:

Input: left = 2, right = 11
Output: "399168e2"
Explanation: The product is 39916800.
There are 2 trailing zeros, which we remove to get 399168. The abbreviation will end with "e2".
The number of digits after removing the trailing zeros is 6, so we do not abbreviate it further.
Hence, the abbreviated product is "399168e2".

Example 3:

Input: left = 371, right = 375
Output: "7219856259e3"
Explanation: The product is 7219856259000.

 

Constraints:

  • 1 <= left <= right <= 104

Solutions

Solution 1

import numpy


class Solution:
  def abbreviateProduct(self, left: int, right: int) -> str:
    cnt2 = cnt5 = 0
    z = numpy.float128(0)
    for x in range(left, right + 1):
      z += numpy.log10(x)
      while x % 2 == 0:
        x //= 2
        cnt2 += 1
      while x % 5 == 0:
        x //= 5
        cnt5 += 1
    c = cnt2 = cnt5 = min(cnt2, cnt5)
    suf = y = 1
    gt = False
    for x in range(left, right + 1):
      while cnt2 and x % 2 == 0:
        x //= 2
        cnt2 -= 1
      while cnt5 and x % 5 == 0:
        x //= 5
        cnt5 -= 1
      suf = suf * x % 100000
      if not gt:
        y *= x
        gt = y >= 1e10
    if not gt:
      return str(y) + "e" + str(c)
    pre = int(pow(10, z - int(z) + 4))
    return str(pre) + "..." + str(suf).zfill(5) + "e" + str(c)
class Solution {

  public String abbreviateProduct(int left, int right) {
    int cnt2 = 0, cnt5 = 0;
    for (int i = left; i <= right; ++i) {
      int x = i;
      for (; x % 2 == 0; x /= 2) {
        ++cnt2;
      }
      for (; x % 5 == 0; x /= 5) {
        ++cnt5;
      }
    }
    int c = Math.min(cnt2, cnt5);
    cnt2 = cnt5 = c;
    long suf = 1;
    double pre = 1;
    boolean gt = false;
    for (int i = left; i <= right; ++i) {
      for (suf *= i; cnt2 > 0 && suf % 2 == 0; suf /= 2) {
        --cnt2;
      }
      for (; cnt5 > 0 && suf % 5 == 0; suf /= 5) {
        --cnt5;
      }
      if (suf >= (long) 1e10) {
        gt = true;
        suf %= (long) 1e10;
      }
      for (pre *= i; pre > 1e5; pre /= 10) {
      }
    }
    if (gt) {
      return (int) pre + "..." + String.format("%05d", suf % (int) 1e5) + "e" + c;
    }
    return suf + "e" + c;
  }
}
class Solution {
public:
  string abbreviateProduct(int left, int right) {
    int cnt2 = 0, cnt5 = 0;
    for (int i = left; i <= right; ++i) {
      int x = i;
      for (; x % 2 == 0; x /= 2) {
        ++cnt2;
      }
      for (; x % 5 == 0; x /= 5) {
        ++cnt5;
      }
    }
    int c = min(cnt2, cnt5);
    cnt2 = cnt5 = c;
    long long suf = 1;
    long double pre = 1;
    bool gt = false;
    for (int i = left; i <= right; ++i) {
      for (suf *= i; cnt2 && suf % 2 == 0; suf /= 2) {
        --cnt2;
      }
      for (; cnt5 && suf % 5 == 0; suf /= 5) {
        --cnt5;
      }
      if (suf >= 1e10) {
        gt = true;
        suf %= (long long) 1e10;
      }
      for (pre *= i; pre > 1e5; pre /= 10) {
      }
    }
    if (gt) {
      char buf[10];
      snprintf(buf, sizeof(buf), "%0*lld", 5, suf % (int) 1e5);
      return to_string((int) pre) + "..." + string(buf) + "e" + to_string(c);
    }
    return to_string(suf) + "e" + to_string(c);
  }
};
func abbreviateProduct(left int, right int) string {
  cnt2, cnt5 := 0, 0
  for i := left; i <= right; i++ {
    x := i
    for x%2 == 0 {
      cnt2++
      x /= 2
    }
    for x%5 == 0 {
      cnt5++
      x /= 5
    }
  }
  c := int(math.Min(float64(cnt2), float64(cnt5)))
  cnt2 = c
  cnt5 = c
  suf := int64(1)
  pre := float64(1)
  gt := false
  for i := left; i <= right; i++ {
    for suf *= int64(i); cnt2 > 0 && suf%2 == 0; {
      cnt2--
      suf /= int64(2)
    }
    for cnt5 > 0 && suf%5 == 0 {
      cnt5--
      suf /= int64(5)
    }
    if float64(suf) >= 1e10 {
      gt = true
      suf %= int64(1e10)
    }
    for pre *= float64(i); pre > 1e5; {
      pre /= 10
    }
  }
  if gt {
    return fmt.Sprintf("%05d...%05de%d", int(pre), int(suf)%int(1e5), c)
  }
  return fmt.Sprintf("%de%d", suf, c)
}

Solution 2

class Solution:
  def abbreviateProduct(self, left: int, right: int) -> str:
    cnt2 = cnt5 = 0
    for x in range(left, right + 1):
      while x % 2 == 0:
        cnt2 += 1
        x //= 2
      while x % 5 == 0:
        cnt5 += 1
        x //= 5
    c = cnt2 = cnt5 = min(cnt2, cnt5)
    pre = suf = 1
    gt = False
    for x in range(left, right + 1):
      suf *= x
      while cnt2 and suf % 2 == 0:
        suf //= 2
        cnt2 -= 1
      while cnt5 and suf % 5 == 0:
        suf //= 5
        cnt5 -= 1
      if suf >= 1e10:
        gt = True
        suf %= int(1e10)
      pre *= x
      while pre > 1e5:
        pre /= 10
    if gt:
      return str(int(pre)) + "..." + str(suf % int(1e5)).zfill(5) + 'e' + str(c)
    return str(suf) + "e" + str(c)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文