返回介绍

lcci / 17.21.Volume of Histogram / README_EN

发布于 2024-06-17 01:04:42 字数 4200 浏览 0 评论 0 收藏 0

17.21. Volume of Histogram

中文文档

Description

Imagine a histogram (bar graph). Design an algorithm to compute the volume of water it could hold if someone poured water across the top. You can assume that each histogram bar has width 1.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of water (blue section) are being trapped. Thanks Marcos for contributing this image!

Example:


Input: [0,1,0,2,1,0,1,3,2,1,2,1]

Output: 6

Solutions

Solution 1

class Solution:
  def trap(self, height: List[int]) -> int:
    n = len(height)
    if n < 3:
      return 0
    left = [height[0]] * n
    right = [height[-1]] * n
    for i in range(1, n):
      left[i] = max(left[i - 1], height[i])
      right[n - i - 1] = max(right[n - i], height[n - i - 1])
    return sum(min(l, r) - h for l, r, h in zip(left, right, height))
class Solution {
  public int trap(int[] height) {
    int n = height.length;
    if (n < 3) {
      return 0;
    }
    int[] left = new int[n];
    int[] right = new int[n];
    left[0] = height[0];
    right[n - 1] = height[n - 1];
    for (int i = 1; i < n; ++i) {
      left[i] = Math.max(left[i - 1], height[i]);
      right[n - i - 1] = Math.max(right[n - i], height[n - i - 1]);
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      ans += Math.min(left[i], right[i]) - height[i];
    }
    return ans;
  }
}
class Solution {
public:
  int trap(vector<int>& height) {
    int n = height.size();
    if (n < 3) {
      return 0;
    }
    int left[n], right[n];
    left[0] = height[0];
    right[n - 1] = height[n - 1];
    for (int i = 1; i < n; ++i) {
      left[i] = max(left[i - 1], height[i]);
      right[n - i - 1] = max(right[n - i], height[n - i - 1]);
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      ans += min(left[i], right[i]) - height[i];
    }
    return ans;
  }
};
func trap(height []int) (ans int) {
  n := len(height)
  if n < 3 {
    return 0
  }
  left := make([]int, n)
  right := make([]int, n)
  left[0], right[n-1] = height[0], height[n-1]
  for i := 1; i < n; i++ {
    left[i] = max(left[i-1], height[i])
    right[n-i-1] = max(right[n-i], height[n-i-1])
  }
  for i, h := range height {
    ans += min(left[i], right[i]) - h
  }
  return
}
function trap(height: number[]): number {
  const n = height.length;
  if (n < 3) {
    return 0;
  }
  const left: number[] = new Array(n).fill(height[0]);
  const right: number[] = new Array(n).fill(height[n - 1]);
  for (let i = 1; i < n; ++i) {
    left[i] = Math.max(left[i - 1], height[i]);
    right[n - i - 1] = Math.max(right[n - i], height[n - i - 1]);
  }
  let ans = 0;
  for (let i = 0; i < n; ++i) {
    ans += Math.min(left[i], right[i]) - height[i];
  }
  return ans;
}
public class Solution {
  public int Trap(int[] height) {
    int n = height.Length;
    if (n < 3) {
      return 0;
    }
    int[] left = new int[n];
    int[] right = new int[n];
    left[0] = height[0];
    right[n - 1] = height[n - 1];
    for (int i = 1; i < n; ++i) {
      left[i] = Math.Max(left[i - 1], height[i]);
      right[n - i - 1] = Math.Max(right[n - i], height[n - i - 1]);
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      ans += Math.Min(left[i], right[i]) - height[i];
    }
    return ans;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文