概述
文章
- 基础篇
- 进阶篇
- 其他篇
用户指南
NumPy 参考手册
- 数组对象
- 常量
- 通函数(ufunc)
- 常用 API
- 创建数组
- 数组处理程序
- 二进制运算
- 字符串操作
- C-Types 外部函数接口(numpy.ctypeslib)
- 时间日期相关
- 数据类型相关
- 可选的 Scipy 加速支持(numpy.dual)
- 具有自动域的数学函数( numpy.emath)
- 浮点错误处理
- 离散傅立叶变换(numpy.fft)
- 财金相关
- 实用的功能
- 特殊的 NumPy 帮助功能
- 索引相关
- 输入和输出
- 线性代数(numpy.linalg)
- 逻辑函数
- 操作掩码数组
- 数学函数(Mathematical functions)
- 矩阵库 (numpy.matlib)
- 杂项(Miscellaneous routines)
- 填充数组(Padding Arrays)
- 多项式(Polynomials)
- 随机抽样 (numpy.random)
- 操作集合(Set routines)
- 排序,搜索和计数(Sorting, searching, and counting)
- Statistics
- Test Support (numpy.testing)
- Window functions
- 打包(numpy.distutils)
- NumPy Distutils 用户指南
- NumPy C-API
- NumPy 的内部
- NumPy 和 SWIG
其他文档
创建数组
另见
简介
创建数组有5种常规机制:
- 从其他Python结构(例如,列表,元组)转换
- numpy原生数组的创建(例如,arange、ones、zeros等)
- 从磁盘读取数组,无论是标准格式还是自定义格式
- 通过使用字符串或缓冲区从原始字节创建数组
- 使用特殊库函数(例如,random)
本节不包括复制,连接或以其他方式扩展或改变现有数组的方法。它也不会涵盖创建对象数组或结构化数组。这些都包含在他们自己的章节中。
将Python array_like对象转换为Numpy数组
通常,在Python中排列成array-like结构的数值数据可以通过使用array()函数转换为数组。最明显的例子是列表和元组。有关其使用的详细信息,请参阅array()的文档。一些对象可能支持数组协议并允许以这种方式转换为数组。找出对象是否可以使用array()转换为一个数组numpy 数组的简单方法很简单,只要交互式试一下,看看它是否工作!(Python方式)。
例子:
>>> x = np.array([2,3,1,0])
>>> x = np.array([2, 3, 1, 0])
>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists,
and types
>>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]])
Numpy原生数组的创建
Numpy内置了从头开始创建数组的函数:
zeros(shape)将创建一个用指定形状用0填充的数组。默认的dtype是float64。
>>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]])
ones(shape)将创建一个用1个值填充的数组。它在所有其他方面与zeros相同。
arange()将创建具有有规律递增值的数组。检查文档字符串以获取有关可以使用的各种方式的完整信息。这里给出几个例子:
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([ 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.1)
array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])
请注意,关于用户应该注意的最后用法在arange文档字符串中有一些细微的描述。
linspace() 将创建具有指定数量元素的数组,并在指定的开始值和结束值之间平均间隔。例如:
>>> np.linspace(1., 4., 6)
array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ])
这个创建函数的优点是可以保证元素的数量以及开始和结束点,对于任意的开始,停止和步骤值,arange()通常不会这样做。
indices() 将创建一组数组(堆积为一个更高维的数组),每个维度一个,每个维度表示该维度中的变化。一个例子说明比口头描述要好得多:
>>> np.indices((3,3))
array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]])
这对于评估常规网格上多个维度的功能特别有用。
从磁盘读取数组
这大概是大数组创建的最常见情况。当然,细节很大程度上取决于磁盘上的数据格式,所以本节只能给出如何处理各种格式的一般指示。
标准二进制格式
各种字段都有数组数据的标准格式。下面列出了那些已知的Python库来读取它们并返回numpy数组(可能有其他可能读取并转换为numpy数组的其他数据,因此请检查最后一节)
HDF5: h5py
FITS: Astropy
无法直接读取但不易转换的格式示例是像PIL这样的库支持的格式(能够读取和写入许多图像格式,如jpg,png等)。
常见ASCII格式
逗号分隔值文件(CSV)被广泛使用(以及Excel等程序的导出和导入选项)。有很多方法可以在Python中阅读这些文件。python中有CSV函数和pylab函数(matplotlib的一部分)。
更多通用的ascii文件可以在scipy中使用io软件包读取。
自定义二进制格式
有各种各样的方法可以使用。如果文件具有相对简单的格式,那么可以编写一个简单的 I/O 库,并使用 numpy fromfile() 函数和 .tofile() 方法直接读取和写入numpy数组(尽管介意你的字节序)!如果存在一个读取数据的良好 C 或 C++ 库,可以使用各种技术来封装该库,但这肯定要做得更多,并且需要更多的高级知识才能与C或C++ 接口。
使用特殊库
有些库可用于生成特殊用途的数组,且无法列出所有的这些库。最常见的用途是随机使用许多数组生成函数,这些函数可以生成随机值数组,以及一些实用函数来生成特殊矩阵(例如对角线)。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论