返回介绍

solution / 2800-2899 / 2818.Apply Operations to Maximize Score / README_EN

发布于 2024-06-17 01:02:59 字数 12824 浏览 0 评论 0 收藏 0

2818. Apply Operations to Maximize Score

中文文档

Description

You are given an array nums of n positive integers and an integer k.

Initially, you start with a score of 1. You have to maximize your score by applying the following operation at most k times:

  • Choose any non-empty subarray nums[l, ..., r] that you haven't chosen previously.
  • Choose an element x of nums[l, ..., r] with the highest prime score. If multiple such elements exist, choose the one with the smallest index.
  • Multiply your score by x.

Here, nums[l, ..., r] denotes the subarray of nums starting at index l and ending at the index r, both ends being inclusive.

The prime score of an integer x is equal to the number of distinct prime factors of x. For example, the prime score of 300 is 3 since 300 = 2 * 2 * 3 * 5 * 5.

Return _the maximum possible score after applying at most _k_ operations_.

Since the answer may be large, return it modulo 109 + 7.

 

Example 1:

Input: nums = [8,3,9,3,8], k = 2
Output: 81
Explanation: To get a score of 81, we can apply the following operations:
- Choose subarray nums[2, ..., 2]. nums[2] is the only element in this subarray. Hence, we multiply the score by nums[2]. The score becomes 1 * 9 = 9.
- Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 1, but nums[2] has the smaller index. Hence, we multiply the score by nums[2]. The score becomes 9 * 9 = 81.
It can be proven that 81 is the highest score one can obtain.

Example 2:

Input: nums = [19,12,14,6,10,18], k = 3
Output: 4788
Explanation: To get a score of 4788, we can apply the following operations: 
- Choose subarray nums[0, ..., 0]. nums[0] is the only element in this subarray. Hence, we multiply the score by nums[0]. The score becomes 1 * 19 = 19.
- Choose subarray nums[5, ..., 5]. nums[5] is the only element in this subarray. Hence, we multiply the score by nums[5]. The score becomes 19 * 18 = 342.
- Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 2, but nums[2] has the smaller index. Hence, we multipy the score by nums[2]. The score becomes 342 * 14 = 4788.
It can be proven that 4788 is the highest score one can obtain.

 

Constraints:

  • 1 <= nums.length == n <= 105
  • 1 <= nums[i] <= 105
  • 1 <= k <= min(n * (n + 1) / 2, 109)

Solutions

Solution 1: Monotonic Stack + Greedy

It is not difficult to see that the number of subarrays with the highest prime score of an element $nums[i]$ is $cnt = (i - l) \times (r - i)$, where $l$ is the leftmost index such that $primeScore(nums[l]) \ge primeScore(nums[i])$, and $r$ is the rightmost index such that $primeScore(nums[r]) \ge primeScore(nums[i])$.

Since we are allowed to operate at most $k$ times, we can greedily enumerate $nums[i]$ from large to small, and compute the $cnt$ of each element. If $cnt \le k$, then the contribution of $nums[i]$ to the answer is $nums[i]^{cnt}$, and we update $k = k - cnt$. If $cnt \gt k$, then the contribution of $nums[i]$ to the answer is $nums[i]^{k}$, and we break out the loop.

Return the answer after the loop. Note that the power is large, so we need to use fast power.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array.

def primeFactors(n):
  i = 2
  ans = set()
  while i * i <= n:
    while n % i == 0:
      ans.add(i)
      n //= i
    i += 1
  if n > 1:
    ans.add(n)
  return len(ans)


class Solution:
  def maximumScore(self, nums: List[int], k: int) -> int:
    mod = 10**9 + 7
    arr = [(i, primeFactors(x), x) for i, x in enumerate(nums)]
    n = len(nums)

    left = [-1] * n
    right = [n] * n
    stk = []
    for i, f, x in arr:
      while stk and stk[-1][0] < f:
        stk.pop()
      if stk:
        left[i] = stk[-1][1]
      stk.append((f, i))

    stk = []
    for i, f, x in arr[::-1]:
      while stk and stk[-1][0] <= f:
        stk.pop()
      if stk:
        right[i] = stk[-1][1]
      stk.append((f, i))

    arr.sort(key=lambda x: -x[2])
    ans = 1
    for i, f, x in arr:
      l, r = left[i], right[i]
      cnt = (i - l) * (r - i)
      if cnt <= k:
        ans = ans * pow(x, cnt, mod) % mod
        k -= cnt
      else:
        ans = ans * pow(x, k, mod) % mod
        break
    return ans
class Solution {
  private final int mod = (int) 1e9 + 7;

  public int maximumScore(List<Integer> nums, int k) {
    int n = nums.size();
    int[][] arr = new int[n][0];
    for (int i = 0; i < n; ++i) {
      arr[i] = new int[] {i, primeFactors(nums.get(i)), nums.get(i)};
    }
    int[] left = new int[n];
    int[] right = new int[n];
    Arrays.fill(left, -1);
    Arrays.fill(right, n);
    Deque<Integer> stk = new ArrayDeque<>();
    for (int[] e : arr) {
      int i = e[0], f = e[1];
      while (!stk.isEmpty() && arr[stk.peek()][1] < f) {
        stk.pop();
      }
      if (!stk.isEmpty()) {
        left[i] = stk.peek();
      }
      stk.push(i);
    }
    stk.clear();
    for (int i = n - 1; i >= 0; --i) {
      int f = arr[i][1];
      while (!stk.isEmpty() && arr[stk.peek()][1] <= f) {
        stk.pop();
      }
      if (!stk.isEmpty()) {
        right[i] = stk.peek();
      }
      stk.push(i);
    }
    Arrays.sort(arr, (a, b) -> b[2] - a[2]);
    long ans = 1;
    for (int[] e : arr) {
      int i = e[0], x = e[2];
      int l = left[i], r = right[i];
      long cnt = (long) (i - l) * (r - i);
      if (cnt <= k) {
        ans = ans * qpow(x, cnt) % mod;
        k -= cnt;
      } else {
        ans = ans * qpow(x, k) % mod;
        break;
      }
    }
    return (int) ans;
  }

  private int primeFactors(int n) {
    int i = 2;
    Set<Integer> ans = new HashSet<>();
    while (i <= n / i) {
      while (n % i == 0) {
        ans.add(i);
        n /= i;
      }
      ++i;
    }
    if (n > 1) {
      ans.add(n);
    }
    return ans.size();
  }

  private int qpow(long a, long n) {
    long ans = 1;
    for (; n > 0; n >>= 1) {
      if ((n & 1) == 1) {
        ans = ans * a % mod;
      }
      a = a * a % mod;
    }
    return (int) ans;
  }
}
class Solution {
public:
  int maximumScore(vector<int>& nums, int k) {
    const int mod = 1e9 + 7;
    int n = nums.size();
    vector<tuple<int, int, int>> arr(n);
    for (int i = 0; i < n; ++i) {
      arr[i] = {i, primeFactors(nums[i]), nums[i]};
    }
    vector<int> left(n, -1);
    vector<int> right(n, n);
    stack<int> stk;
    for (auto [i, f, _] : arr) {
      while (!stk.empty() && get<1>(arr[stk.top()]) < f) {
        stk.pop();
      }
      if (!stk.empty()) {
        left[i] = stk.top();
      }
      stk.push(i);
    }
    stk = stack<int>();
    for (int i = n - 1; ~i; --i) {
      int f = get<1>(arr[i]);
      while (!stk.empty() && get<1>(arr[stk.top()]) <= f) {
        stk.pop();
      }
      if (!stk.empty()) {
        right[i] = stk.top();
      }
      stk.push(i);
    }
    sort(arr.begin(), arr.end(), [](const auto& lhs, const auto& rhs) {
      return get<2>(rhs) < get<2>(lhs);
    });
    long long ans = 1;
    auto qpow = [&](long long a, int n) {
      long long ans = 1;
      for (; n; n >>= 1) {
        if (n & 1) {
          ans = ans * a % mod;
        }
        a = a * a % mod;
      }
      return ans;
    };
    for (auto [i, _, x] : arr) {
      int l = left[i], r = right[i];
      long long cnt = 1LL * (i - l) * (r - i);
      if (cnt <= k) {
        ans = ans * qpow(x, cnt) % mod;
        k -= cnt;
      } else {
        ans = ans * qpow(x, k) % mod;
        break;
      }
    }
    return ans;
  }

  int primeFactors(int n) {
    int i = 2;
    unordered_set<int> ans;
    while (i <= n / i) {
      while (n % i == 0) {
        ans.insert(i);
        n /= i;
      }
      ++i;
    }
    if (n > 1) {
      ans.insert(n);
    }
    return ans.size();
  }
};
func maximumScore(nums []int, k int) int {
  n := len(nums)
  const mod = 1e9 + 7
  qpow := func(a, n int) int {
    ans := 1
    for ; n > 0; n >>= 1 {
      if n&1 == 1 {
        ans = ans * a % mod
      }
      a = a * a % mod
    }
    return ans
  }
  arr := make([][3]int, n)
  left := make([]int, n)
  right := make([]int, n)
  for i, x := range nums {
    left[i] = -1
    right[i] = n
    arr[i] = [3]int{i, primeFactors(x), x}
  }
  stk := []int{}
  for _, e := range arr {
    i, f := e[0], e[1]
    for len(stk) > 0 && arr[stk[len(stk)-1]][1] < f {
      stk = stk[:len(stk)-1]
    }
    if len(stk) > 0 {
      left[i] = stk[len(stk)-1]
    }
    stk = append(stk, i)
  }
  stk = []int{}
  for i := n - 1; i >= 0; i-- {
    f := arr[i][1]
    for len(stk) > 0 && arr[stk[len(stk)-1]][1] <= f {
      stk = stk[:len(stk)-1]
    }
    if len(stk) > 0 {
      right[i] = stk[len(stk)-1]
    }
    stk = append(stk, i)
  }
  sort.Slice(arr, func(i, j int) bool { return arr[i][2] > arr[j][2] })
  ans := 1
  for _, e := range arr {
    i, x := e[0], e[2]
    l, r := left[i], right[i]
    cnt := (i - l) * (r - i)
    if cnt <= k {
      ans = ans * qpow(x, cnt) % mod
      k -= cnt
    } else {
      ans = ans * qpow(x, k) % mod
      break
    }
  }
  return ans
}

func primeFactors(n int) int {
  i := 2
  ans := map[int]bool{}
  for i <= n/i {
    for n%i == 0 {
      ans[i] = true
      n /= i
    }
    i++
  }
  if n > 1 {
    ans[n] = true
  }
  return len(ans)
}
function maximumScore(nums: number[], k: number): number {
  const mod = 10 ** 9 + 7;
  const n = nums.length;
  const arr: number[][] = Array(n)
    .fill(0)
    .map(() => Array(3).fill(0));
  const left: number[] = Array(n).fill(-1);
  const right: number[] = Array(n).fill(n);
  for (let i = 0; i < n; ++i) {
    arr[i] = [i, primeFactors(nums[i]), nums[i]];
  }
  const stk: number[] = [];
  for (const [i, f, _] of arr) {
    while (stk.length && arr[stk.at(-1)!][1] < f) {
      stk.pop();
    }
    if (stk.length) {
      left[i] = stk.at(-1)!;
    }
    stk.push(i);
  }
  stk.length = 0;
  for (let i = n - 1; i >= 0; --i) {
    const f = arr[i][1];
    while (stk.length && arr[stk.at(-1)!][1] <= f) {
      stk.pop();
    }
    if (stk.length) {
      right[i] = stk.at(-1)!;
    }
    stk.push(i);
  }
  arr.sort((a, b) => b[2] - a[2]);
  let ans = 1n;
  for (const [i, _, x] of arr) {
    const l = left[i];
    const r = right[i];
    const cnt = (i - l) * (r - i);
    if (cnt <= k) {
      ans = (ans * qpow(BigInt(x), cnt, mod)) % BigInt(mod);
      k -= cnt;
    } else {
      ans = (ans * qpow(BigInt(x), k, mod)) % BigInt(mod);
      break;
    }
  }
  return Number(ans);
}

function primeFactors(n: number): number {
  let i = 2;
  const s: Set<number> = new Set();
  while (i * i <= n) {
    while (n % i === 0) {
      s.add(i);
      n = Math.floor(n / i);
    }
    ++i;
  }
  if (n > 1) {
    s.add(n);
  }
  return s.size;
}

function qpow(a: bigint, n: number, mod: number): bigint {
  let ans = 1n;
  for (; n; n >>>= 1) {
    if (n & 1) {
      ans = (ans * a) % BigInt(mod);
    }
    a = (a * a) % BigInt(mod);
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文