返回介绍

17.2 阻塞型 I/O 和 GIL

发布于 2024-02-05 21:59:47 字数 1015 浏览 0 评论 0 收藏 0

CPython 解释器本身就不是线程安全的,因此有全局解释器锁(GIL),一次只允许使用一个线程执行 Python 字节码。因此,一个 Python 进程通常不能同时使用多个 CPU 核心。5

5这是 CPython 解释器的局限,与 Python 语言本身无关。Jython 和 IronPython 没有这种限制。不过,目前最快的 Python 解释器 PyPy 也有 GIL。

编写 Python 代码时无法控制 GIL;不过,执行耗时的任务时,可以使用一个内置的函数或一个使用 C 语言编写的扩展释放 GIL。其实,有个使用 C 语言编写的 Python 库能管理 GIL,自行启动操作系统线程,利用全部可用的 CPU 核心。这样做会极大地增加库代码的复杂度,因此大多数库的作者都不这么做。

然而,标准库中所有执行阻塞型 I/O 操作的函数,在等待操作系统返回结果时都会释放 GIL。这意味着在 Python 语言这个层次上可以使用多线程,而 I/O 密集型 Python 程序能从中受益:一个 Python 线程等待网络响应时,阻塞型 I/O 函数会释放 GIL,再运行一个线程。

因此 David Beazley 才说:“Python 线程毫无作用。”6

6出自“Generators: The Final Frontier”,第 106 张幻灯片。

 Python 标准库中的所有阻塞型 I/O 函数都会释放 GIL,允许其他线程运行。time.sleep() 函数也会释放 GIL。因此,尽管有 GIL,Python 线程还是能在 I/O 密集型应用中发挥作用。

下面简单说明如何在 CPU 密集型作业中使用 concurrent.futures 模块轻松绕开 GIL。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文