- 前言
- 目标读者
- 非目标读者
- 本书的结构
- 以实践为基础
- 硬件
- 杂谈:个人的一点看法
- Python 术语表
- Python 版本表
- 排版约定
- 使用代码示例
- 第一部分 序幕
- 第 1 章 Python 数据模型
- 第二部分 数据结构
- 第 2 章 序列构成的数组
- 第 3 章 字典和集合
- 第 4 章 文本和字节序列
- 第三部分 把函数视作对象
- 第 5 章 一等函数
- 第 6 章 使用一等函数实现设计模式
- 第 7 章 函数装饰器和闭包
- 第四部分 面向对象惯用法
- 第 8 章 对象引用、可变性和垃圾回收
- 第 9 章 符合 Python 风格的对象
- 第 10 章 序列的修改、散列和切片
- 第 11 章 接口:从协议到抽象基类
- 第 12 章 继承的优缺点
- 第 13 章 正确重载运算符
- 第五部分 控制流程
- 第 14 章 可迭代的对象、迭代器和生成器
- 14.1 Sentence 类第1版:单词序列
- 14.2 可迭代的对象与迭代器的对比
- 14.3 Sentence 类第2版:典型的迭代器
- 14.4 Sentence 类第3版:生成器函数
- 14.5 Sentence 类第4版:惰性实现
- 14.6 Sentence 类第5版:生成器表达式
- 14.7 何时使用生成器表达式
- 14.8 另一个示例:等差数列生成器
- 14.9 标准库中的生成器函数
- 14.10 Python 3.3 中新出现的句法:yield from
- 14.11 可迭代的归约函数
- 14.12 深入分析 iter 函数
- 14.13 案例分析:在数据库转换工具中使用生成器
- 14.14 把生成器当成协程
- 14.15 本章小结
- 14.16 延伸阅读
- 第 15 章 上下文管理器和 else 块
- 第 16 章 协程
- 第 17 章 使用期物处理并发
- 第 18 章 使用 asyncio 包处理并发
- 第六部分 元编程
- 第 19 章 动态属性和特性
- 第 20 章 属性描述符
- 第 21 章 类元编程
- 结语
- 延伸阅读
- 附录 A 辅助脚本
- Python 术语表
- 作者简介
- 关于封面
17.2 阻塞型 I/O 和 GIL
CPython 解释器本身就不是线程安全的,因此有全局解释器锁(GIL),一次只允许使用一个线程执行 Python 字节码。因此,一个 Python 进程通常不能同时使用多个 CPU 核心。5
5这是 CPython 解释器的局限,与 Python 语言本身无关。Jython 和 IronPython 没有这种限制。不过,目前最快的 Python 解释器 PyPy 也有 GIL。
编写 Python 代码时无法控制 GIL;不过,执行耗时的任务时,可以使用一个内置的函数或一个使用 C 语言编写的扩展释放 GIL。其实,有个使用 C 语言编写的 Python 库能管理 GIL,自行启动操作系统线程,利用全部可用的 CPU 核心。这样做会极大地增加库代码的复杂度,因此大多数库的作者都不这么做。
然而,标准库中所有执行阻塞型 I/O 操作的函数,在等待操作系统返回结果时都会释放 GIL。这意味着在 Python 语言这个层次上可以使用多线程,而 I/O 密集型 Python 程序能从中受益:一个 Python 线程等待网络响应时,阻塞型 I/O 函数会释放 GIL,再运行一个线程。
因此 David Beazley 才说:“Python 线程毫无作用。”6
6出自“Generators: The Final Frontier”,第 106 张幻灯片。
Python 标准库中的所有阻塞型 I/O 函数都会释放 GIL,允许其他线程运行。time.sleep() 函数也会释放 GIL。因此,尽管有 GIL,Python 线程还是能在 I/O 密集型应用中发挥作用。
下面简单说明如何在 CPU 密集型作业中使用 concurrent.futures 模块轻松绕开 GIL。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论