返回介绍

Special Matrices

发布于 2025-02-25 23:43:49 字数 2513 浏览 0 评论 0 收藏 0

Some matrices have interesting properties that allow us either simplify the underlying linear system or to understand more about it.

Square matrices have the same number of columns (usually denoted \(n\)). We refer to an arbitrary square matrix as and \(n\times n\) or we refer to it as a ‘square matrix of dimension \(n\)‘. If an \(n\times n\) matrix \(A\) has full rank (i.e. it has rank \(n\)), then \(A\) is invertible, and its inverse is unique. This is a situation that leads to a unique solution to a linear system.

A diagonal matrix is a matrix with all entries off the diagonal equal to zero. Strictly speaking, such a matrix should be square, but we can also consider rectangular matrices of size \(m\times n\) to be diagonal, if all entries \(a_{ij}\) are zero for \(i\neq j\)

A matrix \(A\) is (skew) symmetric iff \(a_{ij} = (-)a_{ji}\).

Equivalently, \(A\) is (skew) symmetric iff

\[A = (-)A^T\]

A matrix \(A\) is (upper|lower) triangular if \(a_{ij} = 0\) for all \(i (>|<) j\)

These are matrices with lots of zero entries. Banded matrices have non-zero ‘bands’, and this structure can be exploited to simplify computations. Sparse matrices are matrices where there are ‘few’ non-zero entries, but there is no pattern to where non-zero entries are found.

A matrix \(A\) is orthogonal iff

\[A A^T = I\]

In other words, \(A\) is orthogonal iff

\[A^T=A^{-1}\]

Facts:

  • The rows and columns of an orthogonal matrix are an orthonormal set of vectors.
  • Geometrically speaking, orthogonal transformations preserve lengths and angles between vectors

Positive definite matrices are an important class of matrices with very desirable properties. A square matrix \(A\) is positive definite if

\[\begin{split}u^TA u > 0\end{split}\]

for any non-zero n-dimensional vector \(u\).

A symmetric, positive-definite matrix \(A\) is a positive-definite matrix such that

\[A = A^T\]

IMPORTANT:

  • Symmetric, positive-definite matrices have ‘square-roots’ (in a sense)
  • Any symmetric, positive-definite matrix is diagonizable!!!
  • Co-variance matrices are symmetric and positive-definite

Now that we have the basics down, we can move on to numerical methods for solving systems - aka matrix decompositions.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文