返回介绍

solution / 1800-1899 / 1884.Egg Drop With 2 Eggs and N Floors / README

发布于 2024-06-17 01:03:13 字数 1696 浏览 0 评论 0 收藏 0

1884. 鸡蛋掉落-两枚鸡蛋

English Version

题目描述

给你 2 枚相同 的鸡蛋,和一栋从第 1 层到第 n 层共有 n 层楼的建筑。

已知存在楼层 f ,满足 0 <= f <= n ,任何从 高于 f 的楼层落下的鸡蛋都 会碎 ,从 f 楼层或比它低 的楼层落下的鸡蛋都 不会碎

每次操作,你可以取一枚 没有碎 的鸡蛋并把它从任一楼层 x 扔下(满足 1 <= x <= n)。如果鸡蛋碎了,你就不能再次使用它。如果某枚鸡蛋扔下后没有摔碎,则可以在之后的操作中 重复使用 这枚鸡蛋。

请你计算并返回要确定 f 确切的值 最小操作次数 是多少?

 

示例 1:

输入:n = 2
输出:2
解释:我们可以将第一枚鸡蛋从 1 楼扔下,然后将第二枚从 2 楼扔下。
如果第一枚鸡蛋碎了,可知 f = 0;
如果第二枚鸡蛋碎了,但第一枚没碎,可知 f = 1;
否则,当两个鸡蛋都没碎时,可知 f = 2。

示例 2:

输入:n = 100
输出:14
解释:
一种最优的策略是:
- 将第一枚鸡蛋从 9 楼扔下。如果碎了,那么 f 在 0 和 8 之间。将第二枚从 1 楼扔下,然后每扔一次上一层楼,在 8 次内找到 f 。总操作次数 = 1 + 8 = 9 。
- 如果第一枚鸡蛋没有碎,那么再把第一枚鸡蛋从 22 层扔下。如果碎了,那么 f 在 9 和 21 之间。将第二枚鸡蛋从 10 楼扔下,然后每扔一次上一层楼,在 12 次内找到 f 。总操作次数 = 2 + 12 = 14 。
- 如果第一枚鸡蛋没有再次碎掉,则按照类似的方法从 34, 45, 55, 64, 72, 79, 85, 90, 94, 97, 99 和 100 楼分别扔下第一枚鸡蛋。
不管结果如何,最多需要扔 14 次来确定 f 。

 

提示:

  • 1 <= n <= 1000

解法

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文