- 概览
- 安装
- 教程
- 算法接口文档
- 简易高效的并行接口
- APIS
- FREQUENTLY ASKED QUESTIONS
- EVOKIT
- 其他
- parl.algorithms.paddle.policy_gradient
- parl.algorithms.paddle.dqn
- parl.algorithms.paddle.ddpg
- parl.algorithms.paddle.ddqn
- parl.algorithms.paddle.oac
- parl.algorithms.paddle.a2c
- parl.algorithms.paddle.qmix
- parl.algorithms.paddle.td3
- parl.algorithms.paddle.sac
- parl.algorithms.paddle.ppo
- parl.algorithms.paddle.maddpg
- parl.core.paddle.model
- parl.core.paddle.algorithm
- parl.remote.remote_decorator
- parl.core.paddle.agent
- parl.remote.client
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
parl.algorithms.paddle.policy_gradient
parl.algorithms.paddle.policy_gradient 源代码
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import parl import paddle from paddle.distribution import Categorical from parl.utils.utils import check_model_method __all__ = ['PolicyGradient'] [文档]class PolicyGradient(parl.Algorithm): [文档] def __init__(self, model, lr): """Policy gradient algorithm Args: model (parl.Model): model defining forward network of policy. lr (float): learning rate. """ # checks check_model_method(model, 'forward', self.__class__.__name__) assert isinstance(lr, float) self.model = model self.optimizer = paddle.optimizer.Adam( learning_rate=lr, parameters=self.model.parameters()) [文档] def predict(self, obs): """Predict the probability of actions Args: obs (paddle tensor): shape of (obs_dim,) Returns: prob (paddle tensor): shape of (action_dim,) """ prob = self.model(obs) return prob [文档] def learn(self, obs, action, reward): """Update model with policy gradient algorithm Args: obs (paddle tensor): shape of (batch_size, obs_dim) action (paddle tensor): shape of (batch_size, 1) reward (paddle tensor): shape of (batch_size, 1) Returns: loss (paddle tensor): shape of (1) """ prob = self.model(obs) log_prob = Categorical(prob).log_prob(action) loss = paddle.mean(-1 * log_prob * reward) self.optimizer.clear_grad() loss.backward() self.optimizer.step() return loss
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论