- 概览
- 安装
- 教程
- 算法接口文档
- 简易高效的并行接口
- APIS
- FREQUENTLY ASKED QUESTIONS
- EVOKIT
- 其他
- parl.algorithms.paddle.policy_gradient
- parl.algorithms.paddle.dqn
- parl.algorithms.paddle.ddpg
- parl.algorithms.paddle.ddqn
- parl.algorithms.paddle.oac
- parl.algorithms.paddle.a2c
- parl.algorithms.paddle.qmix
- parl.algorithms.paddle.td3
- parl.algorithms.paddle.sac
- parl.algorithms.paddle.ppo
- parl.algorithms.paddle.maddpg
- parl.core.paddle.model
- parl.core.paddle.algorithm
- parl.remote.remote_decorator
- parl.core.paddle.agent
- parl.remote.client
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
TD3
- class TD3(model, gamma=None, tau=None, actor_lr=None, critic_lr=None, policy_noise=0.2, noise_clip=0.5, policy_freq=2)[源代码]¶
基类:
Algorithm
- __init__(model, gamma=None, tau=None, actor_lr=None, critic_lr=None, policy_noise=0.2, noise_clip=0.5, policy_freq=2)[源代码]¶
TD3 algorithm
- 参数:
model (parl.Model) – forward network of actor and critic.
gamma (float) – discounted factor for reward computation
tau (float) – decay coefficient when updating the weights of self.target_model with self.model
actor_lr (float) – learning rate of the actor model
critic_lr (float) – learning rate of the critic model
policy_noise (float) – noise added to target policy during critic update
noise_clip (float) – range to clip target policy noise
policy_freq (int) – frequency of delayed policy updates
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论