返回介绍

solution / 0100-0199 / 0103.Binary Tree Zigzag Level Order Traversal / README_EN

发布于 2024-06-17 01:04:05 字数 9032 浏览 0 评论 0 收藏 0

103. Binary Tree Zigzag Level Order Traversal

中文文档

Description

Given the root of a binary tree, return _the zigzag level order traversal of its nodes' values_. (i.e., from left to right, then right to left for the next level and alternate between).

 

Example 1:

Input: root = [3,9,20,null,null,15,7]
Output: [[3],[20,9],[15,7]]

Example 2:

Input: root = [1]
Output: [[1]]

Example 3:

Input: root = []
Output: []

 

Constraints:

  • The number of nodes in the tree is in the range [0, 2000].
  • -100 <= Node.val <= 100

Solutions

Solution 1: BFS

To implement zigzag level order traversal, we need to add a flag left on the basis of level order traversal. This flag is used to mark the order of the node values in the current level. If left is true, the node values of the current level are stored in the result array ans from left to right. If left is false, the node values of the current level are stored in the result array ans from right to left.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
    ans = []
    if root is None:
      return ans
    q = deque([root])
    ans = []
    left = 1
    while q:
      t = []
      for _ in range(len(q)):
        node = q.popleft()
        t.append(node.val)
        if node.left:
          q.append(node.left)
        if node.right:
          q.append(node.right)
      ans.append(t if left else t[::-1])
      left ^= 1
    return ans
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
    List<List<Integer>> ans = new ArrayList<>();
    if (root == null) {
      return ans;
    }
    Deque<TreeNode> q = new ArrayDeque<>();
    q.offer(root);
    boolean left = true;
    while (!q.isEmpty()) {
      List<Integer> t = new ArrayList<>();
      for (int n = q.size(); n > 0; --n) {
        TreeNode node = q.poll();
        t.add(node.val);
        if (node.left != null) {
          q.offer(node.left);
        }
        if (node.right != null) {
          q.offer(node.right);
        }
      }
      if (!left) {
        Collections.reverse(t);
      }
      ans.add(t);
      left = !left;
    }
    return ans;
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
    vector<vector<int>> ans;
    if (!root) {
      return ans;
    }
    queue<TreeNode*> q{{root}};
    int left = 1;
    while (!q.empty()) {
      vector<int> t;
      for (int n = q.size(); n; --n) {
        auto node = q.front();
        q.pop();
        t.emplace_back(node->val);
        if (node->left) {
          q.push(node->left);
        }
        if (node->right) {
          q.push(node->right);
        }
      }
      if (!left) {
        reverse(t.begin(), t.end());
      }
      ans.emplace_back(t);
      left ^= 1;
    }
    return ans;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func zigzagLevelOrder(root *TreeNode) (ans [][]int) {
  if root == nil {
    return
  }
  q := []*TreeNode{root}
  left := true
  for len(q) > 0 {
    t := []int{}
    for n := len(q); n > 0; n-- {
      node := q[0]
      q = q[1:]
      t = append(t, node.Val)
      if node.Left != nil {
        q = append(q, node.Left)
      }
      if node.Right != nil {
        q = append(q, node.Right)
      }
    }
    if !left {
      for i, j := 0, len(t)-1; i < j; i, j = i+1, j-1 {
        t[i], t[j] = t[j], t[i]
      }
    }
    ans = append(ans, t)
    left = !left
  }
  return
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function zigzagLevelOrder(root: TreeNode | null): number[][] {
  const ans: number[][] = [];
  if (!root) {
    return ans;
  }
  const q: TreeNode[] = [root];
  let left: number = 1;
  while (q.length) {
    const t: number[] = [];
    const qq: TreeNode[] = [];
    for (const { val, left, right } of q) {
      t.push(val);
      left && qq.push(left);
      right && qq.push(right);
    }
    ans.push(left ? t : t.reverse());
    q.splice(0, q.length, ...qq);
    left ^= 1;
  }
  return ans;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//   TreeNode {
//     val,
//     left: None,
//     right: None
//   }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::VecDeque;
impl Solution {
  pub fn zigzag_level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
    let mut ans = Vec::new();
    let mut left = true;
    if let Some(root_node) = root {
      let mut q = VecDeque::new();
      q.push_back(root_node);
      while !q.is_empty() {
        let mut t = Vec::new();
        for _ in 0..q.len() {
          if let Some(node) = q.pop_front() {
            let node_ref = node.borrow();
            t.push(node_ref.val);
            if let Some(ref left) = node_ref.left {
              q.push_back(Rc::clone(left));
            }
            if let Some(ref right) = node_ref.right {
              q.push_back(Rc::clone(right));
            }
          }
        }
        if !left {
          t.reverse();
        }
        ans.push(t);
        left = !left;
      }
    }
    ans
  }
}
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *   this.val = (val===undefined ? 0 : val)
 *   this.left = (left===undefined ? null : left)
 *   this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[][]}
 */
var zigzagLevelOrder = function (root) {
  const ans = [];
  if (!root) {
    return ans;
  }
  const q = [root];
  let left = 1;
  while (q.length) {
    const t = [];
    const qq = [];
    for (const { val, left, right } of q) {
      t.push(val);
      left && qq.push(left);
      right && qq.push(right);
    }
    ans.push(left ? t : t.reverse());
    q.splice(0, q.length, ...qq);
    left ^= 1;
  }
  return ans;
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文