返回介绍

solution / 1700-1799 / 1745.Palindrome Partitioning IV / README

发布于 2024-06-17 01:03:15 字数 3484 浏览 0 评论 0 收藏 0

1745. 分割回文串 IV

English Version

题目描述

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false 。

当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串

 

示例 1:

输入:s = "abcbdd"
输出:true
解释:"abcbdd" = "a" + "bcb" + "dd",三个子字符串都是回文的。

示例 2:

输入:s = "bcbddxy"
输出:false
解释:s 没办法被分割成 3 个回文子字符串。

 

提示:

  • 3 <= s.length <= 2000
  • s​​​​​​ 只包含小写英文字母。

解法

方法一:预处理 + 枚举

预处理出字符串 s 的所有子串是否为回文串,然后枚举 s 的所有分割点,判断是否满足条件。

时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 为字符串 s 的长度。

class Solution:
  def checkPartitioning(self, s: str) -> bool:
    n = len(s)
    g = [[True] * n for _ in range(n)]
    for i in range(n - 1, -1, -1):
      for j in range(i + 1, n):
        g[i][j] = s[i] == s[j] and (i + 1 == j or g[i + 1][j - 1])
    for i in range(n - 2):
      for j in range(i + 1, n - 1):
        if g[0][i] and g[i + 1][j] and g[j + 1][-1]:
          return True
    return False
class Solution {
  public boolean checkPartitioning(String s) {
    int n = s.length();
    boolean[][] g = new boolean[n][n];
    for (var e : g) {
      Arrays.fill(e, true);
    }
    for (int i = n - 1; i >= 0; --i) {
      for (int j = i + 1; j < n; ++j) {
        g[i][j] = s.charAt(i) == s.charAt(j) && (i + 1 == j || g[i + 1][j - 1]);
      }
    }
    for (int i = 0; i < n - 2; ++i) {
      for (int j = i + 1; j < n - 1; ++j) {
        if (g[0][i] && g[i + 1][j] && g[j + 1][n - 1]) {
          return true;
        }
      }
    }
    return false;
  }
}
class Solution {
public:
  bool checkPartitioning(string s) {
    int n = s.size();
    vector<vector<bool>> g(n, vector<bool>(n, true));
    for (int i = n - 1; i >= 0; --i) {
      for (int j = i + 1; j < n; ++j) {
        g[i][j] = s[i] == s[j] && (i + 1 == j || g[i + 1][j - 1]);
      }
    }
    for (int i = 0; i < n - 2; ++i) {
      for (int j = i + 1; j < n - 1; ++j) {
        if (g[0][i] && g[i + 1][j] && g[j + 1][n - 1]) {
          return true;
        }
      }
    }
    return false;
  }
};
func checkPartitioning(s string) bool {
  n := len(s)
  g := make([][]bool, n)
  for i := range g {
    g[i] = make([]bool, n)
    for j := range g[i] {
      g[i][j] = true
    }
  }
  for i := n - 1; i >= 0; i-- {
    for j := i + 1; j < n; j++ {
      g[i][j] = s[i] == s[j] && (i+1 == j || g[i+1][j-1])
    }
  }
  for i := 0; i < n-2; i++ {
    for j := i + 1; j < n-1; j++ {
      if g[0][i] && g[i+1][j] && g[j+1][n-1] {
        return true
      }
    }
  }
  return false
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文