第1章 面试的流程
第2章 面试需要的基础知识
第3章 高质量的代码
第4章 解决面试题的思路
第5章 优化时间和空间效率
第6章 面试中的各项能力
第7章 两个面试案例
面试题6:重建二叉树
题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出图2.6所示的二叉树并输出它的头结点。二叉树结点的定义如下:
图2.6 根据前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}重建的二叉树
在二叉树的前序遍历序列中,第一个数字总是树的根结点的值。但在中序遍历序列中,根结点的值在序列的中间,左子树的结点的值位于根结点的值的左边,而右子树的结点的值位于根结点的值的右边。因此我们需要扫描中序遍历序列,才能找到根结点的值。
如图2.7所示,前序遍历序列的第一个数字1就是根结点的值。扫描中序遍历序列,就能确定根结点的值的位置。根据中序遍历特点,在根结点的值1前面的3个数字都是左子树结点的值,位于1后面的数字都是右子树结点的值。
图2.7 在二叉树的前序遍历和中序遍历的序列中确定根结点的值、左子树结点的值和右子树结点的值
由于在中序遍历序列中,有3个数字是左子树结点的值,因此左子树总共有3个左子结点。同样,在前序遍历的序列中,根结点后面的3个数字就是3个左子树结点的值,再后面的所有数字都是右子树结点的值。这样我们就在前序遍历和中序遍历两个序列中,分别找到了左右子树对应的子序列。
既然我们已经分别找到了左、右子树的前序遍历序列和中序遍历序列,我们可以用同样的方法分别去构建左右子树。也就是说,接下来的事情可以用递归的方法去完成。
在想清楚如何在前序遍历和中序遍历的序列中确定左、右子树的子序列之后,我们可以写出如下的递归代码:
在函数ConstructCore中,我们先根据前序遍历序列的第一个数字创建根结点,接下来在中序遍历序列中找到根结点的位置,这样就能确定左、右子树结点的数量。在前序遍历和中序遍历的序列中划分了左、右子树结点的值之后,我们就可以递归地调用函数ConstructCore,去分别构建它的左右子树。
源代码:
本题完整的源代码详见06_ConstructBinaryTree项目。
测试用例:
- 普通二叉树(完全二叉树,不完全二叉树)。
- 特殊二叉树(所有结点都没有右子结点的二叉树,所有结点都没有左子结点的二叉树,只有一个结点的二叉树)。
- 特殊输入测试(二叉树的根结点指针为NULL、输入的前序遍历序列和中序遍历序列不匹配)。
本题考点:
- 考查应聘者对二叉树的前序遍历、中序遍历的理解程度。只有对二叉树的不同遍历算法有了深刻的理解,应聘者才有可能在遍历序列中划分出左、右子树对应的子序列。
- 考查应聘者分析复杂问题的能力。我们把构建二叉树的大问题分解成构建左、右子树的两个小问题。我们发现小问题和大问题在本质上是一致的,因此可以用递归的方式解决。更多关于分解复杂问题的讨论,请参考本书的4.4节。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论