返回介绍

1.8 使用 TensorFlow 所面临的挑战

发布于 2024-02-05 23:12:37 字数 535 浏览 0 评论 0 收藏 0

1.分布式支持尚不成熟

虽然分布式运行时已正式发布,但在TensorFlow中使用这种特性却并非想象中那样容易。在本书写作之时,为使用该特性,需手工定义每台设备的角色,这种工作既乏味又容易出错。由于它是一种全新的特性,因此可供学习的例程较少,想必未来的版本应当会有所改进。如前文所述,对Kubernetes的支持已进入开发流水线,但到目前为止,它仍然尚未完成。

2.实现定制代码的技巧性较强

虽然关于如何用TensorFlow创建用户自己的运算有一份官方指南可供参考,但要将定制的代码实现到TensorFlow中仍然颇费周折。然而,如果希望对主代码库做出贡献,谷歌开发团队会快速回答你的问题,并查看你所提交的代码,以便为吸纳你的工作成果进行准备。

3.某些特性仍然缺失

如果你是一名经验丰富的机器学习专家,并对其他框架具备深入的了解,你可能会发现一些自己喜欢的虽小但十分有用的特性尚未在TensorFlow中实现。通常,你想要的这种特性在TensorFlow中会有一些替代方案,但这可能无法阻止你的抱怨“为什么它还未得到本地支持?”

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文