文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
1.定量数据的分布分析
对于定量变量而言,选择“组数”和“组宽”是做频率分布分析时最主要的问题,一般按照以下步骤进行。
1)求极差。
2)决定组距与组数。
3)决定分点。
4)列出频率分布表。
5)绘制频率分布直方图。
遵循的主要原则如下。
1)各组之间必须是相互排斥的。
2)各组必须将所有的数据包含在内。
3)各组的组宽最好相等。
下面结合具体实例,运用分布分析对定量数据进行特征分析。
表3-2是描述菜品“捞起生鱼片”在2014年第二个季度的销售数据,通过表中数据绘制销售量的频率分布表、频率分布图,对该定量数据做出相应的分析。
表3-2 “捞起生鱼片”的销售情况
数据详见:demo/data/catering_sale.xls
(1)求极差
极差=最大值-最小值=3960-45=3915
(2)分组
这里根据业务数据的含义,可取组距为500。
组数=极差/组距=3915/500=7.838
(3)决定分点
分布区间如表3-3所示。
表3-3 分布区间
(4)绘制频率分布直方图[3]
根据分组区间得到如表3-4所示的频率分布表。其中,第1列将数据所在的范围分成若干组段,第1个组段要包括最小值,最后一个组段要包括最大值。习惯上将各组段设为左闭右开的半开区间,如第一个分组为[0,500)。第2列组中值是各组段的代表值,由本组段的上、下限相加除以2得到。第3列和第4列分别为频数和频率。第5列是累计频率,是否需要计算该列视情况而定。
表3-4 频率分布表
(5)绘制频率分布直方图
若以2014年第二季度“捞起生鱼片”每天的销售额为横轴,以各组段的频率密度(频率与组距之比)为纵轴,表34的数据可绘制成频率分布直方图,如图3-3所示。
图3-3 销售额的频率分布直方图
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论