返回介绍

Algorithm list

发布于 2025-02-22 11:29:54 字数 26977 浏览 0 评论 0 收藏 0

Recommender Algorithm List

superClassdirectory pathshort namealgorithm
AbstractRecommenderbaselineconstantguessConstantGuessRecommender
AbstractRecommenderbaselineglobalaverageGlobalAverageRecommender
AbstractRecommenderbaselineitemaverageItemAverageRecommender
ProbabilisticGraphicalRecommenderbaselineitemclusterItemClusterRecommender
AbstractRecommenderbaselinemostpopularMostPopularRecommender
AbstractRecommenderbaselinerandomguessRandomGuessRecommender
AbstractRecommenderbaselineuseraverageUserAverageRecommender
ProbabilisticGraphicalRecommenderbaselineuserclusterUserClusterRecommender
MatrixFactorizationRecommendercf.rankingaobprAoBPRRecommender
ProbabilisticGraphicalRecommendercf.rankingaspectmodelrankingAspectModelRecommender
MatrixFactorizationRecommendercf.rankingbprBPRRecommender
MatrixFactorizationRecommendercf.rankingclimfCLIMFRecommender
MatrixFactorizationRecommendercf.rankingealsEALSRecommender
MatrixFactorizationRecommendercf.rankingfismaucFISMaucRecommender
MatrixFactorizationRecommendercf.rankingfismrmseFISMrmseRecommender
MatrixFactorizationRecommendercf.rankinggbprGBPRRecommender
ProbabilisticGraphicalRecommendercf.rankingitembigramItemBigramRecommender
ProbabilisticGraphicalRecommendercf.rankingldaLDARecommender
MatrixFactorizationRecommendercf.rankingListwisemfListwiseMFRecommender
ProbabilisticGraphicalRecommendercf.rankingplsaPLSARecommender
MatrixFactorizationRecommendercf.rankingrankalsRankALSRecommender
MatrixFactorizationRecommendercf.rankingranksgdRankSGDRecommender
AbstractRecommendercf.rankingslimSLIMRecommender
MatrixFactorizationRecommendercf.rankingwbprWBPRRecommender
MatrixFactorizationRecommendercf.rankingwrmfWRMFRecommender
ProbabilisticGraphicalRecommendercf.ratingaspectmodelratingAspectModelRecommender
BiasedMFRecommender → MatrixFactorizationRecommendercf.ratingasvdppASVDPlusPlusRecommender
MatrixFactorizationRecommendercf.ratingbiasedmfBiasedMFRecommender
MatrixFactorizationRecommendercf.ratingbnpoissmfBNPoissMFRecommender
MatrixFactorizationRecommendercf.ratingbpmfBPMFRecommender
MatrixFactorizationRecommendercf.ratingbpoissmfBPoissMFRecommender
FactorizationMachineRecommendercf.ratingfmalsFMALSRecommender
FactorizationMachineRecommendercf.ratingfmsgdFMSGDRecommender
ProbabilisticGraphicalRecommendercf.ratinggplsaGPLSARecommender
ProbabilisticGraphicalRecommendercf.ratingldccLDCCRecommender
MatrixFactorizationRecommendercf.ratingllormaLLORMARecommender
MatrixFactorizationRecommendercf.ratingmfalsMFALSRecommender
MatrixFactorizationRecommendercf.ratingnmfNMFRecommender
MatrixFactorizationRecommendercf.ratingpmfPMFRecommender
AbstractRecommendercf.ratingrbmRBMRecommender
MatrixFactorizationRecommendercf.ratingrfrecRFRecRecommender
BiasedMFRecommender → MatrixFactorizationRecommendercf.ratingsvdppSVDPlusPlusRecommender
ProbabilisticGraphicalRecommendercf.ratingurpURPRecommender
ProbabilisticGraphicalRecommendercfbhfreeBHFreeRecommender
ProbabilisticGraphicalRecommendercfbucmBUCMRecommender
AbstractRecommendercfitemknnItemKNNRecommender
AbstractRecommendercfuserknnUserKNNRecommender
BiasedMFRecommender → MatrixFactorizationRecommendercontentefmEFMRecommender
BiasedMFRecommender → MatrixFactorizationRecommendercontenthftHFTRecommender
SocialRecommendercontext.rankingsbprSBPRRecommender
TensorRecommendercontext.ratingbptfBPTFRecommender
TensorRecommendercontext.ratingpitfPITFRecommender
SocialRecommendercontext.ratingrsteRSTERecommender
SocialRecommendercontext.ratingsocialmfSocialMFRecommender
SocialRecommendercontext.ratingsorecSoRecRecommender
SocialRecommendercontext.ratingsoregSoRegRecommender
BiasedMFRecommender → MatrixFactorizationRecommendercontext.ratingtimesvdTimeSVDRecommender
SocialMFRecommendercontext.ratingtrustmfTrustMFRecommender
SocialRecommendercontext.ratingtrustsvdTrustSVDRecommender
AbstractRecommenderextassociationruleAssociationRuleRecommender
AbstractRecommenderextexternalExternalRecommender
AbstractRecommenderextpersonalitydiagnosisPersonalityDiagnosisRecommender
RankSGDRecommender → MatrixFactorizationRecommenderextprankdPRankDRecommender
AbstractRecommenderextslopeoneSlopeOneRecommender
AbstractRecommenderhybridhybridHybridRecommender

Algorithm Configuration List

Baseline

ConstantGuessRecommender
rec.recommender.class=constantguess
GlobalAverageRecommender
rec.recommender.class=globalaverage
ItemAverageRecommender
rec.recommender.class=itemaverage
ItemClusterRecommender
rec.recommender.class=itemcluster
rec.pgm.number=10
rec.iterator.maximum=20
MostPopularRecommender
rec.recommender.class=mostpopular
rec.recommender.isranking=true
RandomGuessRecommender
rec.recommender.class=randomguess
UserAverageRecommender
rec.recommender.class=useraverage
UserClusterRecommender
rec.recommender.class=usercluster
rec.factory.number=10
rec.iterator.maximum=20

Collaborative Filtering (item ranking)

AOBPRRecommender
rec.recommender.class=aobpr
rec.item.distribution.parameter = 500
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
AspectModelRecommender
rec.recommender.class=aspectmodelranking
rec.iterator.maximum=20
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
data.splitter.cv.number=5
rec.pgm.burnin=10
rec.pgm.samplelag=10
rec.topic.number=10
BPRRecommender
rec.recommender.class=bpr
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnRate.bolddriver=false
rec.learnRate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
CLIMFRecommender
rec.recommender.class=climf
rec.iterator.learnrate=0.001
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
EALSRecommender
rec.recommender.class=eals
rec.iterator.maximum=10
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10

# 0:eALS MF; 1:WRMF; 2: both
rec.eals.wrmf.judge=1

# the overall weight of missing data c0
rec.eals.overall=128

# the significance level of popular items over un-popular ones
rec.eals.ratio=0.4

# confidence weight coefficient, alpha in original paper
rec.wrmf.weight.coefficient=4.0
FISMaucRecommender
rec.recommender.class=fismauc
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=10
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10

rec.fismauc.rho=2
rec.fismauc.alpha=1.5
FISMrmseRecommender
rec.recommender.class=fismrmse
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
rec.recommender.isranking=true

rec.fismrmse.rho=1
rec.fismrmse.alpha=1.5
GBPRRecommender
rec.recommender.class=gbpr
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
ItemBigramRecommender
rec.recommender.class=itembigram
data.column.format=UIRT
data.input.path=test/ratings-date.txt
rec.iterator.maximum=100
rec.topic.number=10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
rec.user.dirichlet.prior=0.01
rec.topic.dirichlet.prior=0.01
rec.pgm.burnin=10
rec.pgm.samplelag=10
LDARecommender
rec.recommender.class=lda
rec.iterator.maximum=100
rec.topic.number = 10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
rec.user.dirichlet.prior=0.01
rec.topic.dirichlet.prior=0.01
rec.pgm.burnin=10
rec.pgm.samplelag=10
data.splitter.cv.number=5
# (0.0 may be a better choose than -1.0)
data.convert.binarize.threshold=0.0
ListwiseMFRecommender
rec.recommender.class=listwisemf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
PLSARecommender
rec.recommender.class=plsa
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
rec.recommender.isranking=true
rec.topic.number = 10
rec.recommender.ranking.topn=10
# (0.0 may be a better choose than -1.0)
data.convert.binarize.threshold=0.0
RankALSRecommender
rec.recommender.class=rankals
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10

rec.rankals.support.weight=true
RankSGDRecommender
rec.recommender.class=ranksgd
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=30
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
SLIMRecommender
rec.recommender.class=slim
rec.similarity.class=cos
# can only use item similarity
rec.recommender.similarities=item
rec.iterator.maximum=40
rec.similarity.shrinkage=10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
rec.neighbors.knn.number=50
rec.recommender.earlystop=true

rec.slim.regularization.l1=1
rec.slim.regularization.l2=5
WBPRRecommender
rec.recommender.class=wbpr
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=10
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.bias.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
WRMFRecommender
rec.recommender.class=wrmf
rec.iterator.maximum=20
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10

# confidence weight coefficient, alpha in original paper
rec.wrmf.weight.coefficient=4.0

Collaborative Filtering (rating prediction)

AspectModelRecommender
rec.recommender.class=aspectmodelrating
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
ASVDPlusPlusRecommender
rec.recommender.class=asvdpp
rec.iteration.learnrate=0.01
rec.iterator.maximum=20
BiasedMFRecommender
rec.recommender.class=biasedmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=1
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.bias.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
BNPoissMFRecommender
rec.recommender.class=bnpoissmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
BPMFRecommender
rec.recommender.class=bpmf
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
BPoissMFRecommender
rec.recommender.class=bpoissmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
FMALSRecommender
data.input.path=arfftest/data.arff
data.column.format=UIR
data.model.splitter=ratio
data.convertor.format=arff
data.model.format=arff

rec.recommender.class=fmals
rec.iterator.learnRate=0.01
rec.iterator.maximum=100
rec.factor.number=10
FMSGDRecommender
data.input.path=arfftest/data.arff
data.column.format=UIR
data.model.splitter=ratio
data.convertor.format=arff
data.model.format=arff

rec.recommender.class=fmsgd
rec.iterator.learnRate=0.001
rec.iterator.maximum=100
rec.factor.number=10
GPLSARecommender
rec.recommender.class=gplsa
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
rec.recommender.smoothWeight=2
rec.recommender.isranking=false
rec.topic.number = 10
LDCCRecommender
rec.recommender.class=ldcc
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
LLORMARecommender
rec.recommender.class=llorma
rec.llorma.global.factors.num = 10
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
MFALSRecommender
rec.recommender.class=mfals
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
NMFRecommender
rec.recommender.class=nmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
PMFRecommender
rec.recommender.class=pmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=50
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
RBMRecommender
rec.recommender.class=rbm
rec.iterator.maximum=20
data.input.path=movielens/ml-100k/ratings.txt
rec.factor.number=500
rec.epsilonw=0.01
rec.epsilonvb=0.01
rec.epsilonhb=0.01
rec.tstep=1
rec.momentum=0.1
rec.lamtaw=0.01
rec.lamtab=0.0
rec.predictiontype=mean
RFRecRecommender
rec.recommender.class=rfrec
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
SVDPlusPlusRecommender
rec.recommender.class=svdpp
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=13
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.impItem.regularization=0.001
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
URPRecommender
rec.recommender.class=urp
rec.iteration.learnrate=0.01
rec.iterator.maximum=100

Collaborative Filtering (rating prediction and item ranking)

BHFreeRecommender
rec.recommender.class=bhfree
rec.pgm.burnin=10
rec.pgm.samplelag=10
rec.iterator.maximum=100
# true for item ranking, false for rating prediction
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
BUCMRecommender
rec.recommender.class=bucm
rec.pgm.burnin=10
rec.pgm.samplelag=10

rec.iterator.maximum=100
rec.pgm.topic.number=10
rec.bucm.alpha=0.01
rec.bucm.beta=0.01
rec.bucm.gamma=0.01
# true for item ranking, false for rating prediction
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
ItemKNNRecommender
rec.recommender.class=itemknn
# true for item ranking, false for rating prediction
rec.recommender.isranking=false
rec.recommender.ranking.topn=10
rec.recommender.similarities=item
rec.similarity.class=pcc
rec.neighbors.knn.number=50
rec.similarity.shrinkage=10
UserKNNRecommender
rec.similarity.class=pcc
rec.neighbors.knn.number=50
rec.recommender.class=userknn
rec.recommender.similarities=user
# true for item ranking, false for rating prediction
rec.recommender.isranking=false
rec.recommender.ranking.topn=10
rec.filter.class=generic
rec.similarity.shrinkage=10

Content

EFMRecommender
data.input.path=efmtest/efm.txt
rec.recommender.class=efm
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.lambda.user=0.05
rec.recommender.lambda.item=0.05
rec.bias.regularization = 0.01
HFTRecommender
data.input.path=hfttest/hft.txt/
rec.recommender.class=hft
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=2
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.eval.enable = 1
rec.recommender.lambda.user=0.05
rec.recommender.lambda.item=0.05
rec.bias.regularization = 0.01

Context(item ranking)

SBPRRecommender
data.appender.class=social
data.appender.path=test/test-append-dir

rec.recommender.class=sbpr
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=200
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.bias.regularization=0.01
rec.factor.number=128
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
rec.recommender.isranking=true
rec.recommender.ranking.topn=10

Context(rating prediction)

BPTFRecommender
rec.recommender.class=bptf
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
PITFRecommender
rec.recommender.class=pitf
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
RSTERecommender
data.appender.class=social
data.appender.path=test/test-append-dir

rec.recommender.class=rste
rec.iterator.learnrate=0.05
rec.iterator.learnrate.maximum=0.05
rec.iterator.maximum=200
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
rec.user.social.ratio=0.8
SocialMFRecommender
data.appender.class=social
data.appender.path=test/test-append-dir

rec.recommender.class=socialmf
rec.iterator.learnrate=0.05
rec.iterator.learnrate.maximum=0.05
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
SoRecRecommender
data.appender.class=social
data.appender.path=test/test-append-dir

rec.recommender.class=sorec
rec.iterator.learnrate=0.05
rec.iterator.learnrate.maximum=0.05
rec.iterator.maximum=1000
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.rate.social.regularization=0.01
rec.user.social.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
SoRegRecommender
data.appender.class=social
data.appender.path=test/test-append-dir

rec.recommender.class=soreg
rec.recommender.similarities=social
rec.similarity.class=pcc
rec.iterator.learnrate=0.001
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=10
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
rec.similarity.shrinkage=10
TimeSVDRecommender
rec.recommender.class=timesvd
data.column.format=UIRT
data.input.path=test/ratings-date.txt
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.learnrate.decay=1.0
TrustMFRecommender
data.appender.class=social
data.appender.path=test/test-append-dir

rec.recommender.class=trustmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=30
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
rec.social.model=T
TrustSVDRecommender
data.appender.class=social
data.appender.path=test/test-append-dir

rec.recommender.class=trustsvd
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=50
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.bias.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true

Extra

AssociationRuleRecommender
rec.recommender.class=associationrule
ExternalRecommender
rec.recommender.class=external
PersonalityDiagnosisRecommender
rec.recommender.class=personalitydiagnosis
rec.PersonalityDiagnosis.sigma=0.1
PRankDRecommender
rec.recommender.class=prankd
rec.similarity.class=cos
rec.recommender.similarities=item
rec.similarity.shrinkage=10
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=50
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.sim.filter=4.0
SlopeOneRecommender
rec.recommender.class=slopeone
rec.eval.enable=true
rec.iterator.maximum=50
rec.factory.number=30
rec.iterator.learn.rate=0.001
rec.recommender.lambda.user=0.05
rec.recommender.lambda.item=0.05

Hybrid

HybridRecommender
rec.recommender.class=hybrid
rec.hybrid.lambda=0.1
rec.iterator.maximum=50
rec.factory.number=30
rec.iterator.learn.rate=0.001
rec.recommender.lambda.user=0.05
rec.recommender.lambda.item=0.05

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文