文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Algorithm list
Recommender Algorithm List
superClass | directory path | short name | algorithm |
---|---|---|---|
AbstractRecommender | baseline | constantguess | ConstantGuessRecommender |
AbstractRecommender | baseline | globalaverage | GlobalAverageRecommender |
AbstractRecommender | baseline | itemaverage | ItemAverageRecommender |
ProbabilisticGraphicalRecommender | baseline | itemcluster | ItemClusterRecommender |
AbstractRecommender | baseline | mostpopular | MostPopularRecommender |
AbstractRecommender | baseline | randomguess | RandomGuessRecommender |
AbstractRecommender | baseline | useraverage | UserAverageRecommender |
ProbabilisticGraphicalRecommender | baseline | usercluster | UserClusterRecommender |
MatrixFactorizationRecommender | cf.ranking | aobpr | AoBPRRecommender |
ProbabilisticGraphicalRecommender | cf.ranking | aspectmodelranking | AspectModelRecommender |
MatrixFactorizationRecommender | cf.ranking | bpr | BPRRecommender |
MatrixFactorizationRecommender | cf.ranking | climf | CLIMFRecommender |
MatrixFactorizationRecommender | cf.ranking | eals | EALSRecommender |
MatrixFactorizationRecommender | cf.ranking | fismauc | FISMaucRecommender |
MatrixFactorizationRecommender | cf.ranking | fismrmse | FISMrmseRecommender |
MatrixFactorizationRecommender | cf.ranking | gbpr | GBPRRecommender |
ProbabilisticGraphicalRecommender | cf.ranking | itembigram | ItemBigramRecommender |
ProbabilisticGraphicalRecommender | cf.ranking | lda | LDARecommender |
MatrixFactorizationRecommender | cf.ranking | Listwisemf | ListwiseMFRecommender |
ProbabilisticGraphicalRecommender | cf.ranking | plsa | PLSARecommender |
MatrixFactorizationRecommender | cf.ranking | rankals | RankALSRecommender |
MatrixFactorizationRecommender | cf.ranking | ranksgd | RankSGDRecommender |
AbstractRecommender | cf.ranking | slim | SLIMRecommender |
MatrixFactorizationRecommender | cf.ranking | wbpr | WBPRRecommender |
MatrixFactorizationRecommender | cf.ranking | wrmf | WRMFRecommender |
ProbabilisticGraphicalRecommender | cf.rating | aspectmodelrating | AspectModelRecommender |
BiasedMFRecommender → MatrixFactorizationRecommender | cf.rating | asvdpp | ASVDPlusPlusRecommender |
MatrixFactorizationRecommender | cf.rating | biasedmf | BiasedMFRecommender |
MatrixFactorizationRecommender | cf.rating | bnpoissmf | BNPoissMFRecommender |
MatrixFactorizationRecommender | cf.rating | bpmf | BPMFRecommender |
MatrixFactorizationRecommender | cf.rating | bpoissmf | BPoissMFRecommender |
FactorizationMachineRecommender | cf.rating | fmals | FMALSRecommender |
FactorizationMachineRecommender | cf.rating | fmsgd | FMSGDRecommender |
ProbabilisticGraphicalRecommender | cf.rating | gplsa | GPLSARecommender |
ProbabilisticGraphicalRecommender | cf.rating | ldcc | LDCCRecommender |
MatrixFactorizationRecommender | cf.rating | llorma | LLORMARecommender |
MatrixFactorizationRecommender | cf.rating | mfals | MFALSRecommender |
MatrixFactorizationRecommender | cf.rating | nmf | NMFRecommender |
MatrixFactorizationRecommender | cf.rating | pmf | PMFRecommender |
AbstractRecommender | cf.rating | rbm | RBMRecommender |
MatrixFactorizationRecommender | cf.rating | rfrec | RFRecRecommender |
BiasedMFRecommender → MatrixFactorizationRecommender | cf.rating | svdpp | SVDPlusPlusRecommender |
ProbabilisticGraphicalRecommender | cf.rating | urp | URPRecommender |
ProbabilisticGraphicalRecommender | cf | bhfree | BHFreeRecommender |
ProbabilisticGraphicalRecommender | cf | bucm | BUCMRecommender |
AbstractRecommender | cf | itemknn | ItemKNNRecommender |
AbstractRecommender | cf | userknn | UserKNNRecommender |
BiasedMFRecommender → MatrixFactorizationRecommender | content | efm | EFMRecommender |
BiasedMFRecommender → MatrixFactorizationRecommender | content | hft | HFTRecommender |
SocialRecommender | context.ranking | sbpr | SBPRRecommender |
TensorRecommender | context.rating | bptf | BPTFRecommender |
TensorRecommender | context.rating | pitf | PITFRecommender |
SocialRecommender | context.rating | rste | RSTERecommender |
SocialRecommender | context.rating | socialmf | SocialMFRecommender |
SocialRecommender | context.rating | sorec | SoRecRecommender |
SocialRecommender | context.rating | soreg | SoRegRecommender |
BiasedMFRecommender → MatrixFactorizationRecommender | context.rating | timesvd | TimeSVDRecommender |
SocialMFRecommender | context.rating | trustmf | TrustMFRecommender |
SocialRecommender | context.rating | trustsvd | TrustSVDRecommender |
AbstractRecommender | ext | associationrule | AssociationRuleRecommender |
AbstractRecommender | ext | external | ExternalRecommender |
AbstractRecommender | ext | personalitydiagnosis | PersonalityDiagnosisRecommender |
RankSGDRecommender → MatrixFactorizationRecommender | ext | prankd | PRankDRecommender |
AbstractRecommender | ext | slopeone | SlopeOneRecommender |
AbstractRecommender | hybrid | hybrid | HybridRecommender |
Algorithm Configuration List
Baseline
ConstantGuessRecommender
rec.recommender.class=constantguess
GlobalAverageRecommender
rec.recommender.class=globalaverage
ItemAverageRecommender
rec.recommender.class=itemaverage
ItemClusterRecommender
rec.recommender.class=itemcluster
rec.pgm.number=10
rec.iterator.maximum=20
MostPopularRecommender
rec.recommender.class=mostpopular
rec.recommender.isranking=true
RandomGuessRecommender
rec.recommender.class=randomguess
UserAverageRecommender
rec.recommender.class=useraverage
UserClusterRecommender
rec.recommender.class=usercluster
rec.factory.number=10
rec.iterator.maximum=20
Collaborative Filtering (item ranking)
AOBPRRecommender
rec.recommender.class=aobpr
rec.item.distribution.parameter = 500
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
AspectModelRecommender
rec.recommender.class=aspectmodelranking
rec.iterator.maximum=20
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
data.splitter.cv.number=5
rec.pgm.burnin=10
rec.pgm.samplelag=10
rec.topic.number=10
BPRRecommender
rec.recommender.class=bpr
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnRate.bolddriver=false
rec.learnRate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
CLIMFRecommender
rec.recommender.class=climf
rec.iterator.learnrate=0.001
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
EALSRecommender
rec.recommender.class=eals
rec.iterator.maximum=10
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
# 0:eALS MF; 1:WRMF; 2: both
rec.eals.wrmf.judge=1
# the overall weight of missing data c0
rec.eals.overall=128
# the significance level of popular items over un-popular ones
rec.eals.ratio=0.4
# confidence weight coefficient, alpha in original paper
rec.wrmf.weight.coefficient=4.0
FISMaucRecommender
rec.recommender.class=fismauc
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=10
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
rec.fismauc.rho=2
rec.fismauc.alpha=1.5
FISMrmseRecommender
rec.recommender.class=fismrmse
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
rec.recommender.isranking=true
rec.fismrmse.rho=1
rec.fismrmse.alpha=1.5
GBPRRecommender
rec.recommender.class=gbpr
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
ItemBigramRecommender
rec.recommender.class=itembigram
data.column.format=UIRT
data.input.path=test/ratings-date.txt
rec.iterator.maximum=100
rec.topic.number=10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
rec.user.dirichlet.prior=0.01
rec.topic.dirichlet.prior=0.01
rec.pgm.burnin=10
rec.pgm.samplelag=10
LDARecommender
rec.recommender.class=lda
rec.iterator.maximum=100
rec.topic.number = 10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
rec.user.dirichlet.prior=0.01
rec.topic.dirichlet.prior=0.01
rec.pgm.burnin=10
rec.pgm.samplelag=10
data.splitter.cv.number=5
# (0.0 may be a better choose than -1.0)
data.convert.binarize.threshold=0.0
ListwiseMFRecommender
rec.recommender.class=listwisemf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
PLSARecommender
rec.recommender.class=plsa
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
rec.recommender.isranking=true
rec.topic.number = 10
rec.recommender.ranking.topn=10
# (0.0 may be a better choose than -1.0)
data.convert.binarize.threshold=0.0
RankALSRecommender
rec.recommender.class=rankals
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
rec.rankals.support.weight=true
RankSGDRecommender
rec.recommender.class=ranksgd
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=30
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
SLIMRecommender
rec.recommender.class=slim
rec.similarity.class=cos
# can only use item similarity
rec.recommender.similarities=item
rec.iterator.maximum=40
rec.similarity.shrinkage=10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
rec.neighbors.knn.number=50
rec.recommender.earlystop=true
rec.slim.regularization.l1=1
rec.slim.regularization.l2=5
WBPRRecommender
rec.recommender.class=wbpr
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=10
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.bias.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
WRMFRecommender
rec.recommender.class=wrmf
rec.iterator.maximum=20
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
# confidence weight coefficient, alpha in original paper
rec.wrmf.weight.coefficient=4.0
Collaborative Filtering (rating prediction)
AspectModelRecommender
rec.recommender.class=aspectmodelrating
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
ASVDPlusPlusRecommender
rec.recommender.class=asvdpp
rec.iteration.learnrate=0.01
rec.iterator.maximum=20
BiasedMFRecommender
rec.recommender.class=biasedmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=1
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.bias.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
BNPoissMFRecommender
rec.recommender.class=bnpoissmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
BPMFRecommender
rec.recommender.class=bpmf
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
BPoissMFRecommender
rec.recommender.class=bpoissmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
FMALSRecommender
data.input.path=arfftest/data.arff
data.column.format=UIR
data.model.splitter=ratio
data.convertor.format=arff
data.model.format=arff
rec.recommender.class=fmals
rec.iterator.learnRate=0.01
rec.iterator.maximum=100
rec.factor.number=10
FMSGDRecommender
data.input.path=arfftest/data.arff
data.column.format=UIR
data.model.splitter=ratio
data.convertor.format=arff
data.model.format=arff
rec.recommender.class=fmsgd
rec.iterator.learnRate=0.001
rec.iterator.maximum=100
rec.factor.number=10
GPLSARecommender
rec.recommender.class=gplsa
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
rec.recommender.smoothWeight=2
rec.recommender.isranking=false
rec.topic.number = 10
LDCCRecommender
rec.recommender.class=ldcc
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
LLORMARecommender
rec.recommender.class=llorma
rec.llorma.global.factors.num = 10
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
MFALSRecommender
rec.recommender.class=mfals
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
NMFRecommender
rec.recommender.class=nmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
PMFRecommender
rec.recommender.class=pmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=50
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
RBMRecommender
rec.recommender.class=rbm
rec.iterator.maximum=20
data.input.path=movielens/ml-100k/ratings.txt
rec.factor.number=500
rec.epsilonw=0.01
rec.epsilonvb=0.01
rec.epsilonhb=0.01
rec.tstep=1
rec.momentum=0.1
rec.lamtaw=0.01
rec.lamtab=0.0
rec.predictiontype=mean
RFRecRecommender
rec.recommender.class=rfrec
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
SVDPlusPlusRecommender
rec.recommender.class=svdpp
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=13
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.impItem.regularization=0.001
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
URPRecommender
rec.recommender.class=urp
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
Collaborative Filtering (rating prediction and item ranking)
BHFreeRecommender
rec.recommender.class=bhfree
rec.pgm.burnin=10
rec.pgm.samplelag=10
rec.iterator.maximum=100
# true for item ranking, false for rating prediction
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
BUCMRecommender
rec.recommender.class=bucm
rec.pgm.burnin=10
rec.pgm.samplelag=10
rec.iterator.maximum=100
rec.pgm.topic.number=10
rec.bucm.alpha=0.01
rec.bucm.beta=0.01
rec.bucm.gamma=0.01
# true for item ranking, false for rating prediction
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
ItemKNNRecommender
rec.recommender.class=itemknn
# true for item ranking, false for rating prediction
rec.recommender.isranking=false
rec.recommender.ranking.topn=10
rec.recommender.similarities=item
rec.similarity.class=pcc
rec.neighbors.knn.number=50
rec.similarity.shrinkage=10
UserKNNRecommender
rec.similarity.class=pcc
rec.neighbors.knn.number=50
rec.recommender.class=userknn
rec.recommender.similarities=user
# true for item ranking, false for rating prediction
rec.recommender.isranking=false
rec.recommender.ranking.topn=10
rec.filter.class=generic
rec.similarity.shrinkage=10
Content
EFMRecommender
data.input.path=efmtest/efm.txt
rec.recommender.class=efm
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.lambda.user=0.05
rec.recommender.lambda.item=0.05
rec.bias.regularization = 0.01
HFTRecommender
data.input.path=hfttest/hft.txt/
rec.recommender.class=hft
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=2
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.eval.enable = 1
rec.recommender.lambda.user=0.05
rec.recommender.lambda.item=0.05
rec.bias.regularization = 0.01
Context(item ranking)
SBPRRecommender
data.appender.class=social
data.appender.path=test/test-append-dir
rec.recommender.class=sbpr
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=200
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.bias.regularization=0.01
rec.factor.number=128
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
rec.recommender.isranking=true
rec.recommender.ranking.topn=10
Context(rating prediction)
BPTFRecommender
rec.recommender.class=bptf
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
PITFRecommender
rec.recommender.class=pitf
rec.iteration.learnrate=0.01
rec.iterator.maximum=100
RSTERecommender
data.appender.class=social
data.appender.path=test/test-append-dir
rec.recommender.class=rste
rec.iterator.learnrate=0.05
rec.iterator.learnrate.maximum=0.05
rec.iterator.maximum=200
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
rec.user.social.ratio=0.8
SocialMFRecommender
data.appender.class=social
data.appender.path=test/test-append-dir
rec.recommender.class=socialmf
rec.iterator.learnrate=0.05
rec.iterator.learnrate.maximum=0.05
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
SoRecRecommender
data.appender.class=social
data.appender.path=test/test-append-dir
rec.recommender.class=sorec
rec.iterator.learnrate=0.05
rec.iterator.learnrate.maximum=0.05
rec.iterator.maximum=1000
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.rate.social.regularization=0.01
rec.user.social.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
SoRegRecommender
data.appender.class=social
data.appender.path=test/test-append-dir
rec.recommender.class=soreg
rec.recommender.similarities=social
rec.similarity.class=pcc
rec.iterator.learnrate=0.001
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=10
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
rec.similarity.shrinkage=10
TimeSVDRecommender
rec.recommender.class=timesvd
data.column.format=UIRT
data.input.path=test/ratings-date.txt
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=100
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.learnrate.decay=1.0
TrustMFRecommender
data.appender.class=social
data.appender.path=test/test-append-dir
rec.recommender.class=trustmf
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=30
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
rec.social.model=T
TrustSVDRecommender
data.appender.class=social
data.appender.path=test/test-append-dir
rec.recommender.class=trustsvd
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=50
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.social.regularization=0.01
rec.bias.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.recommender.earlystop=false
rec.recommender.verbose=true
Extra
AssociationRuleRecommender
rec.recommender.class=associationrule
ExternalRecommender
rec.recommender.class=external
PersonalityDiagnosisRecommender
rec.recommender.class=personalitydiagnosis
rec.PersonalityDiagnosis.sigma=0.1
PRankDRecommender
rec.recommender.class=prankd
rec.similarity.class=cos
rec.recommender.similarities=item
rec.similarity.shrinkage=10
rec.iterator.learnrate=0.01
rec.iterator.learnrate.maximum=0.01
rec.iterator.maximum=50
rec.user.regularization=0.01
rec.item.regularization=0.01
rec.factor.number=10
rec.learnrate.bolddriver=false
rec.learnrate.decay=1.0
rec.sim.filter=4.0
SlopeOneRecommender
rec.recommender.class=slopeone
rec.eval.enable=true
rec.iterator.maximum=50
rec.factory.number=30
rec.iterator.learn.rate=0.001
rec.recommender.lambda.user=0.05
rec.recommender.lambda.item=0.05
Hybrid
HybridRecommender
rec.recommender.class=hybrid
rec.hybrid.lambda=0.1
rec.iterator.maximum=50
rec.factory.number=30
rec.iterator.learn.rate=0.001
rec.recommender.lambda.user=0.05
rec.recommender.lambda.item=0.05
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论