返回介绍

A.1 一条平直的线

发布于 2024-01-27 20:58:55 字数 1851 浏览 0 评论 0 收藏 0

首先,让我们从一个非常简单的场景开始。

想象一下,汽车以30英里每小时的速度匀速前进。不快也不慢,就是时速30英里。

下表中显示了汽车在各个时间点的速度,每半分钟测量一次。

时间/分

速度(英里/小时)

0

30

0.5

30

1.0

30

1.5

30

2.0

30

2.5

30

3.0

30

下图可视化了在这几个时间点的速度。

可以看到,速度并不随时间而改变,因此这是一条水平直线。这条直线不向上倾斜(加速),也不向下倾斜(减速),汽车就保持在30英里每小时。

速度的数学表达式,我们称之为s

现在,如果有人询问速度如何随时间变化,我们会说速度不随时间变化。变化率为0。换句话说,速度不取决于时间,相关性为0。

我们刚刚就完成了微积分计算!

微积分探讨的是,建立关系以表示一种事物如何随着其他事物的变化而变化。此处,我们思考的是速度如何随时间变化而变化。

我们有一个数学方式来表达这种关系。

这些是什么符号?可以将这个符号的意思视为“当时间改变时,速度如何变化”或“s如何与t相关”。

因此,这个表达式说的是速度不随时间变化,这是数学家使用的一种简洁的方式。或者换一种说法,随着时间的推移,速度不受影响。速度对时间的依赖性为0。这就是表达式中0所表示的意思。它们完全是不相关的。

事实上,当你再次观察速度的表达式s =30时,你可以发现这种不相关性。在这个表示式中,一点都没提到时间。也就是说,在这个表达式中,没有隐藏的时间t 。因此,我们不需要做任何复杂的微积分来计算出∂s / ∂t = 0,只要简单地观察表达式就可以得出这个结论。数学家称之为“观察法”。

如∂s / ∂t的表达式,解释了变化率,称为导数。就我们的目的而言,我们不需要知道这点,然而你可能会在其他地方遇到这个词。

现在,如果我们踩下油门,让我们看看会发生什么。这真是太令人兴奋了!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文