一、Python OpenCV 入门
欢迎阅读系列教程,内容涵盖 OpenCV,它是一个图像和视频处理库,包含 C ++,C,Python 和 Java 的绑定。 OpenCV 用于各种图像和视频分析,如面部识别和检测,车牌阅读,照片编辑,高级机器人视觉,光学字符识别等等。
你将需要两个主要的库,第三个可选:python-OpenCV,Numpy 和 Matplotlib。
Windows 用户:
python-OpenCV:有其他的方法,但这是最简单的。 下载相应的 wheel(.whl
)文件,然后使用pip
进行安装。 观看视频来寻求帮助。
pip install numpy
pip install matplotlib
不熟悉使用pip
? 请参阅pip
安装教程来获得帮助。
Linux/Mac 用户
pip3 install numpy
或者
apt-get install python3-numpy
你可能需要apt-get
来安装python3-pip
。
pip3 install matplotlib
或者
apt-get install python3-matplotlib
apt-get install python-OpenCV
Matplotlib 是用于展示来自视频或图像的帧的可选选项。 我们将在这里展示几个使用它的例子。 Numpy 被用于“数值和 Python”的所有东西。 我们主要利用 Numpy 的数组功能。 最后,我们使用python-OpenCV
,它是 Python 特定的 OpenCV 绑定。
OpenCV 有一些操作,如果没有完整安装 OpenCV (大小约 3GB),你将无法完成,但是实际上你可以用 python-OpenCV 最简安装。 我们将在本系列的后续部分中使用 OpenCV 的完整安装,如果你愿意的话,你可以随意获得它,但这三个模块将使我们忙碌一段时间!
通过运行 Python 并执行下列命令来确保你安装成功:
import cv2
import matplotlib
import numpy
如果你没有错误,那么你已经准备好了。好了嘛?让我们下潜吧!
首先,在图像和视频分析方面,我们应该了解一些基本的假设和范式。对现在每个摄像机的记录方式来说,记录实际上是一帧一帧地显示,每秒 30-60 次。但是,它们的核心是静态帧,就像图像一样。因此,图像识别和视频分析大部分使用相同的方法。有些东西,如方向跟踪,将需要连续的图像(帧),但像面部检测或物体识别等东西,在图像和视频中代码几乎完全相同。
接下来,大量的图像和视频分析归结为尽可能简化来源。这几乎总是起始于转换为灰度,但也可以是彩色滤镜,渐变或这些的组合。从这里,我们可以对来源执行各种分析和转化。一般来说,这里发生的事情是转换完成,然后是分析,然后是任何覆盖,我们希望应用在原始来源上,这就是你可以经常看到,对象或面部识别的“成品”在全色图像或视频上显示。然而,数据实际上很少以这种原始形式处理。有一些我们可以在基本层面上做些什么的例子。所有这些都使用基本的网络摄像头来完成,没有什么特别的:
背景提取
颜色过滤
边缘检测
用于对象识别的特征匹配
一般对象识别
在边缘检测的情况下,黑色对应于(0,0,0)
的像素值,而白色线条是(255,255,255)
。视频中的每个图片和帧都会像这样分解为像素,并且像边缘检测一样,我们可以推断,边缘是基于白色与黑色像素对比的地方。然后,如果我们想看到标记边缘的原始图像,我们记录下白色像素的所有坐标位置,然后在原始图像或视频上标记这些位置。
到本教程结束时,你将能够完成上述所有操作,并且能够训练你的机器识别你想要的任何对象。就像我刚开始说的,第一步通常是转换为灰度。在此之前,我们需要加载图像。因此,我们来做吧!在整个教程中,我极力鼓励你使用你自己的数据来玩。如果你有摄像头,一定要使用它,否则找到你认为很有趣的图像。如果你有麻烦,这是一个手表的图像:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('watch.jpg',cv2.IMREAD_GRAYSCALE)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
首先,我们正在导入一些东西,我已经安装了这三个模块。接下来,我们将img
定义为cv2.read(image file, parms)
。默认值是IMREAD_COLOR
,这是没有任何 alpha 通道的颜色。如果你不熟悉,alpha 是不透明度(与透明度相反)。如果你需要保留 Alpha 通道,也可以使用IMREAD_UNCHANGED
。很多时候,你会读取颜色版本,然后将其转换为灰度。如果你没有网络摄像机,这将是你在本教程中使用的主要方法,即加载图像。
你可以不使用IMREAD_COLOR
...等,而是使用简单的数字。你应该熟悉这两种选择,以便了解某个人在做什么。对于第二个参数,可以使用-1
,0
或1
。颜色为1
,灰度为0
,不变为-1
。因此,对于灰度,可以执行cv2.imread('watch.jpg', 0)
。
一旦加载完成,我们使用cv2.imshow(title,image)
来显示图像。从这里,我们使用cv2.waitKey(0)
来等待,直到有任何按键被按下。一旦完成,我们使用cv2.destroyAllWindows()
来关闭所有的东西。
正如前面提到的,你也可以用 Matplotlib 显示图像,下面是一些如何实现的代码:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('watch.jpg',cv2.IMREAD_GRAYSCALE)
plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
plt.plot([200,300,400],[100,200,300],'c', linewidth=5)
plt.show()
请注意,你可以绘制线条,就像任何其他 Matplotlib 图表一样,使用像素位置作为坐标的。 不过,如果你想绘制你的图片,Matplotlib 不是必需的。 OpenCV 为此提供了很好的方法。 当你完成修改后,你可以保存,如下所示:
cv2.imwrite('watchgray.png',img)
将图片导入 OpenCV 似乎很容易,加载视频源如何? 在下一个教程中,我们将展示如何加载摄像头或视频源。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论