第1章 面试的流程
第2章 面试需要的基础知识
第3章 高质量的代码
第4章 解决面试题的思路
第5章 优化时间和空间效率
第6章 面试中的各项能力
第7章 两个面试案例
面试题38:数字在排序数组中出现的次数
题目:统计一个数字在排序数组中出现的次数。例如输入排序数组{1,2,3,3,3,3,4,5}和数字3,由于3在这个数组中出现了4次,因此输出4。
既然输入的数组是排序的,那么我们很自然地就能想到用二分查找算法。在题目给出的例子中,我们可以先用二分查找算法找到一个3。由于3可能出现多次,因此我们找到的3的左右两边可能都有3,于是我们在找到的3的左右两边顺序扫描,分别找出第一个3和最后一个3。因为要查找的数字在长度为n的数组中有可能出现O(n)次,所以顺序扫描的时间复杂度是O(n)。因此这种算法的效率和直接从头到尾顺序扫描整个数组统计3出现的次数的方法是一样的。显然,面试官不会满意这个算法,他会提示我们还有更快的算法。
接下来我们思考如何更好地利用二分查找算法。假设我们是统计数字k在排序数组中出现的次数。在前面的算法中时间主要消耗在如何确定重复出现的数字的第一个k和最后一个k的位置上,有没有可能用二分查找算法直接找到第一个k及最后一个k呢?
我们先分析如何用二分查找算法在数组中找到第一个k。二分查找算法总是先拿数组中间的数字和k作比较。如果中间的数字比k大,那么k只有可能出现在数组的前半段,下一轮我们只在数组的前半段查找就可以了。如果中间的数字比k小,那么k只有可能出现在数组的后半段,下一轮我们只在数组的后半段查找就可以了。如果中间的数字和k相等呢?我们先判断这个数字是不是第一个k。如果位于中间数字的前面一个数字不是k,此时中间的数字刚好就是第一个k。如果中间数字的前面一个数字也是k,也就是说第一个k肯定在数组的前半段,下一轮我们仍然需要在数组的前半段查找。
基于这个思路,我们可以很容易地写出递归的代码找到排序数组中的第一个k:
在函数GetFirstK中,如果数组中不包含数字k,那么返回-1。如果数组中包含至少一个k,那么返回第一个k在数组中的下标。
我们可以用同样的思路在排序数组中找到最后一个k。如果中间数字比k大,那么k只能出现在数组的前半段。如果中间数字比k小,k就只能出现在数组的后半段。如果中间数字等于k呢?我们需要判断这个k是不是最后一个k,也就是中间数字的下一个数字是不是也等于k。如果下一个数字不是k,则中间数字就是最后一个k了;否则下一轮我们还是要在数组的后半段中去查找。我们同样可以基于递归写出如下代码:
和函数GetFirstK类似,如果数组中不包含数字k,那么GetLastK返回-1;否则返回最后一个k在数组中的下标。
在分别找到第一个k和最后一个k的下标之后,我们就能计算出k在数组中出现的次数了。相应的代码如下:
在上述代码中,GetFirstK和GetLastK都是用二分查找法在数组中查找一个合乎要求的数字,它们的时间复杂度都是O(logn),因此GetNumberOfK的总的时间复杂度也只有O(logn)。
源代码:
本题完整的源代码详见38_NumberOfK项目。
测试用例:
- 功能测试(数组中包含查找的数字,数组中没有查找的数字,查找的数字在数组中出现一次/多次)。
- 边界值测试(查找数组中的最大值、最小值,数组中只有一个数字)
- 特殊输入测试(表示数组的指针为NULL指针)。
本题考点:
- 考查应聘者的知识迁移能力。我们都知道二分查找算法可以用来在排序数组中查找一个数字。应聘者如果能够运用知识迁移能力,把问题转换成用二分查找算法查找重复数字的第一个和最后一个,那么这个问题也就解决了一大半。
- 考查应聘者对二分查找算法的理解程度。这道题实际上是二分查找算法的加强版。只有对二分查找算法有着深刻的理解,应聘者才有可能解决这个问题。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论