- GUI
- Windows API tutorial
- Introduction to Windows API
- Windows API main functions
- System functions in Windows API
- Strings in Windows API
- Date & time in Windows API
- A window in Windows API
- First steps in UI
- Windows API menus
- Windows API dialogs
- Windows API controls I
- Windows API controls II
- Windows API controls III
- Advanced controls in Windows API
- Custom controls in Windows API
- The GDI in Windows API
- PyQt4 tutorial
- PyQt5 tutorial
- Qt4 tutorial
- Introduction to Qt4 toolkit
- Qt4 utility classes
- Strings in Qt4
- Date and time in Qt4
- Working with files and directories in Qt4
- First programs in Qt4
- Menus and toolbars in Qt4
- Layout management in Qt4
- Events and signals in Qt4
- Qt4 Widgets
- Qt4 Widgets II
- Painting in Qt4
- Custom widget in Qt4
- The Breakout game in Qt4
- Qt5 tutorial
- Introduction to Qt5 toolkit
- Strings in Qt5
- Date and time in Qt5
- Containers in Qt5
- Working with files and directories in Qt5
- First programs in Qt5
- Menus and toolbars in Qt5
- Layout management in Qt5
- Events and signals in Qt5
- Qt5 Widgets
- Qt5 Widgets II
- Painting in Qt5
- Custom widget in Qt5
- Snake in Qt5
- The Breakout game in Qt5
- PySide tutorial
- Tkinter tutorial
- Tcl/Tk tutorial
- Qt Quick tutorial
- Java Swing tutorial
- JavaFX tutorial
- Java SWT tutorial
- wxWidgets tutorial
- Introduction to wxWidgets
- wxWidgets helper classes
- First programs in wxWidgets
- Menus and toolbars in wxWidgets
- Layout management in wxWidgets
- Events in wxWidgets
- Dialogs in wxWidgets
- wxWidgets widgets
- wxWidgets widgets II
- Drag and Drop in wxWidgets
- Device Contexts in wxWidgets
- Custom widgets in wxWidgets
- The Tetris game in wxWidgets
- wxPython tutorial
- Introduction to wxPython
- First Steps
- Menus and toolbars
- Layout management in wxPython
- Events in wxPython
- wxPython dialogs
- Widgets
- Advanced widgets in wxPython
- Drag and drop in wxPython
- Internationalisation
- Application skeletons in wxPython
- The GDI
- Mapping modes
- Creating custom widgets
- Tips and Tricks
- wxPython Gripts
- The Tetris game in wxPython
- C# Winforms Mono tutorial
- Java Gnome tutorial
- Introduction to Java Gnome
- First steps in Java Gnome
- Layout management in Java Gnome
- Layout management II in Java Gnome
- Menus in Java Gnome
- Toolbars in Java Gnome
- Events in Java Gnome
- Widgets in Java Gnome
- Widgets II in Java Gnome
- Advanced widgets in Java Gnome
- Dialogs in Java Gnome
- Pango in Java Gnome
- Drawing with Cairo in Java Gnome
- Drawing with Cairo II
- Nibbles in Java Gnome
- QtJambi tutorial
- GTK+ tutorial
- Ruby GTK tutorial
- GTK# tutorial
- Visual Basic GTK# tutorial
- PyGTK tutorial
- Introduction to PyGTK
- First steps in PyGTK
- Layout management in PyGTK
- Menus in PyGTK
- Toolbars in PyGTK
- Signals & events in PyGTK
- Widgets in PyGTK
- Widgets II in PyGTK
- Advanced widgets in PyGTK
- Dialogs in PyGTK
- Pango
- Pango II
- Drawing with Cairo in PyGTK
- Drawing with Cairo II
- Snake game in PyGTK
- Custom widget in PyGTK
- PHP GTK tutorial
- C# Qyoto tutorial
- Ruby Qt tutorial
- Visual Basic Qyoto tutorial
- Mono IronPython Winforms tutorial
- Introduction
- First steps in IronPython Mono Winforms
- Layout management
- Menus and toolbars
- Basic Controls in Mono Winforms
- Basic Controls II in Mono Winforms
- Advanced Controls in Mono Winforms
- Dialogs
- Drag & drop in Mono Winforms
- Painting
- Painting II in IronPython Mono Winforms
- Snake in IronPython Mono Winforms
- The Tetris game in IronPython Mono Winforms
- FreeBASIC GTK tutorial
- Jython Swing tutorial
- JRuby Swing tutorial
- Visual Basic Winforms tutorial
- JavaScript GTK tutorial
- Ruby HTTPClient tutorial
- Ruby Faraday tutorial
- Ruby Net::HTTP tutorial
- Java 2D games tutorial
- Java 2D tutorial
- Cairo graphics tutorial
- PyCairo tutorial
- HTML5 canvas tutorial
- Python tutorial
- Python language
- Interactive Python
- Python lexical structure
- Python data types
- Strings in Python
- Python lists
- Python dictionaries
- Python operators
- Keywords in Python
- Functions in Python
- Files in Python
- Object-oriented programming in Python
- Modules
- Packages in Python
- Exceptions in Python
- Iterators and Generators
- Introspection in Python
- Ruby tutorial
- PHP tutorial
- Visual Basic tutorial
- Visual Basic
- Visual Basic lexical structure
- Basics
- Visual Basic data types
- Strings in Visual Basic
- Operators
- Flow control
- Visual Basic arrays
- Procedures & functions in Visual Basic
- Organizing code in Visual Basic
- Object-oriented programming
- Object-oriented programming II in Visual Basic
- Collections in Visual Basic
- Input & output
- Tcl tutorial
- C# tutorial
- Java tutorial
- AWK tutorial
- Jetty tutorial
- Tomcat Derby tutorial
- Jtwig tutorial
- Android tutorial
- Introduction to Android development
- First Android application
- Android Button widgets
- Android Intents
- Layout management in Android
- Android Spinner widget
- SeekBar widget
- Android ProgressBar widget
- Android ListView widget
- Android Pickers
- Android menus
- Dialogs
- Drawing in Android
- Java EE 5 tutorials
- Introduction
- Installing Java
- Installing NetBeans 6
- Java Application Servers
- Resin CGIServlet
- JavaServer Pages, (JSPs)
- Implicit objects in JSPs
- Shopping cart
- JSP & MySQL Database
- Java Servlets
- Sending email in a Servlet
- Creating a captcha in a Servlet
- DataSource & DriverManager
- Java Beans
- Custom JSP tags
- Object relational mapping with iBATIS
- Jsoup tutorial
- MySQL tutorial
- MySQL quick tutorial
- MySQL storage engines
- MySQL data types
- Creating, altering and dropping tables in MySQL
- MySQL expressions
- Inserting, updating, and deleting data in MySQL
- The SELECT statement in MySQL
- MySQL subqueries
- MySQL constraints
- Exporting and importing data in MySQL
- Joining tables in MySQL
- MySQL functions
- Views in MySQL
- Transactions in MySQL
- MySQL stored routines
- MySQL Python tutorial
- MySQL Perl tutorial
- MySQL C API programming tutorial
- MySQL Visual Basic tutorial
- MySQL PHP tutorial
- MySQL Java tutorial
- MySQL Ruby tutorial
- MySQL C# tutorial
- SQLite tutorial
- SQLite C tutorial
- SQLite PHP tutorial
- SQLite Python tutorial
- SQLite Perl tutorial
- SQLite Ruby tutorial
- SQLite C# tutorial
- SQLite Visual Basic tutorial
- PostgreSQL C tutorial
- PostgreSQL Python tutorial
- PostgreSQL Ruby tutorial
- PostgreSQL PHP tutorial
- PostgreSQL Java tutorial
- Apache Derby tutorial
- SQLAlchemy tutorial
- MongoDB PHP tutorial
- MongoDB Java tutorial
- MongoDB JavaScript tutorial
- MongoDB Ruby tutorial
- Spring JdbcTemplate tutorial
- JDBI tutorial
Transparency in PyCairo
In this part of the PyCairo tutorial, we will talk about transparency. We will provide some basic definitions and three interesting transparency examples.
Transparency is the quality of being able to see through a material. The easiest way to understand transparency is to imagine a piece of glass or water. Technically, the rays of light can go through the glass and this way we can see objects behind the glass.
In computer graphics, we can achieve transparency effects using alpha compositing. Alpha compositing is the process of combining an image with a background to create the appearance of partial transparency. The composition process uses an alpha channel. Alpha channel is an 8-bit layer in a graphics file format that is used for expressing translucency (transparency). The extra eight bits per pixel serves as a mask and represents 256 levels of translucency.
(answers.com, wikipedia.org)
Transparent rectangles
The first example will draw ten rectangles with different levels of transparency.
def on_draw(self, wid, cr): for i in range(1, 11): cr.set_source_rgba(0, 0, 1, i*0.1) cr.rectangle(50*i, 20, 40, 40) cr.fill()
The set_source_rgba()
method has an alpha parameter to provide transparency.
for i in range(1, 11): cr.set_source_rgba(0, 0, 1, i*0.1) cr.rectangle(50*i, 20, 40, 40) cr.fill()
This code creates ten rectangles with alpha values from 0.1 ... 1.

Puff effect
In the following example, we create a puff effect. The example will display a growing centered text that will gradually fade out from some point. This is a very common effect which we can often see in flash animations. The paint_with_alpha()
method is crucial to create the effect.
#!/usr/bin/python ''' ZetCode PyCairo tutorial This program creates a 'puff' effect. author: Jan Bodnar website: zetcode.com last edited: August 2012 ''' from gi.repository import Gtk, GLib import cairo class cv(object): SPEED = 14 TEXT_SIZE_MAX = 20 ALPHA_DECREASE = 0.01 SIZE_INCREASE = 0.8 class Example(Gtk.Window): def __init__(self): super(Example, self).__init__() self.init_ui() def init_ui(self): self.darea = Gtk.DrawingArea() self.darea.connect("draw", self.on_draw) self.add(self.darea) self.timer = True self.alpha = 1.0 self.size = 1.0 GLib.timeout_add(cv.SPEED, self.on_timer) self.set_title("Puff") self.resize(350, 200) self.set_position(Gtk.WindowPosition.CENTER) self.connect("delete-event", Gtk.main_quit) self.show_all() def on_timer(self): if not self.timer: return False self.darea.queue_draw() return True def on_draw(self, wid, cr): w, h = self.get_size() cr.set_source_rgb(0.5, 0, 0) cr.paint() cr.select_font_face("Courier", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD) self.size = self.size + cv.SIZE_INCREASE if self.size > cv.TEXT_SIZE_MAX: self.alpha = self.alpha - cv.ALPHA_DECREASE cr.set_font_size(self.size) cr.set_source_rgb(1, 1, 1) (x, y, width, height, dx, dy) = cr.text_extents("ZetCode") cr.move_to(w/2 - width/2, h/2) cr.text_path("ZetCode") cr.clip() cr.paint_with_alpha(self.alpha) if self.alpha <= 0: self.timer = False def main(): app = Example() Gtk.main() if __name__ == "__main__": main()
The example creates a growing and fading text on the window.
class cv(object): SPEED = 14 TEXT_SIZE_MAX = 20 ALPHA_DECREASE = 0.01 SIZE_INCREASE = 0.8
Here we define some constants used in the example.
self.alpha = 1.0 self.size = 1.0
These two variables store the current alpha value and the text size.
GLib.timeout_add(cv.SPEED, self.on_timer)
Each 14 ms the on_timer() method is called.
def on_timer(self): if not self.timer: return False self.darea.queue_draw() return True
In the on_timer()
method, we redraw the drawing area widget with the queue_draw()
method.
def on_draw(self, wid, cr): w, h = self.get_size() cr.set_source_rgb(0.5, 0, 0) cr.paint() cr.select_font_face("Courier", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD) ...
In the on_draw()
method, we get the width and height of the client area of the window. These values are used to center the text. We fill the background of the window in some dark red colour. We select a Courier font for the text.
(x, y, width, height, dx, dy) = cr.text_extents("ZetCode")
We get the text metrics. We will use only the text width.
cr.move_to(w/2 - width/2, h/2)
We move to a position where the text will be centered on the window.
cr.text_path("ZetCode") cr.clip() cr.paint_with_alpha(self.alpha)
We get the path of the text with the text_path()
method. We restrict the painting to the current path using the clip()
method. The paint_with_alpha()
method paints the current source everywhere within the current clip region using a mask of the alpha value.

Reflected image
In the next example, we show a reflected image. This effect makes an illusion as if the image was reflected in water.
#!/usr/bin/python ''' ZetCode PyCairo tutorial This program creates an image reflection. author: Jan Bodnar website: zetcode.com last edited: August 2012 ''' from gi.repository import Gtk import cairo import sys class Example(Gtk.Window): def __init__(self): super(Example, self).__init__() self.init_ui() self.load_image() self.init_vars() def init_ui(self): darea = Gtk.DrawingArea() darea.connect("draw", self.on_draw) self.add(darea) self.set_title("Reflection") self.resize(300, 350) self.set_position(Gtk.WindowPosition.CENTER) self.connect("delete-event", Gtk.main_quit) self.show_all() def load_image(self): try: self.s = cairo.ImageSurface.create_from_png("slanec.png") except Exception, e: print e.message sys.exit(1) def init_vars(self): self.imageWidth = self.s.get_width() self.imageHeight = self.s.get_height() self.gap = 40 self.border = 20 def on_draw(self, wid, cr): w, h = self.get_size() lg = cairo.LinearGradient(w/2, 0, w/2, h*3) lg.add_color_stop_rgba(0, 0, 0, 0, 1) lg.add_color_stop_rgba(h, 0.2, 0.2, 0.2, 1) cr.set_source(lg) cr.paint() cr.set_source_surface(self.s, self.border, self.border) cr.paint() alpha = 0.7 step = 1.0 / self.imageHeight cr.translate(0, 2 * self.imageHeight + self.gap) cr.scale(1, -1) i = 0 while(i < self.imageHeight): cr.rectangle(self.border, self.imageHeight-i, self.imageWidth, 1) i = i + 1 cr.save() cr.clip() cr.set_source_surface(self.s, self.border, self.border) alpha = alpha - step cr.paint_with_alpha(alpha) cr.restore() def main(): app = Example() Gtk.main() if __name__ == "__main__": main()
A reflected ruin of a castle is shown on the window.
def load_image(self): try: self.s = cairo.ImageSurface.create_from_png("slanec.png") except Exception, e: print e.message sys.exit(1)
In the load_image()
method an image surface is created from a PNG image.
def init_vars(self): self.imageWidth = self.s.get_width() self.imageHeight = self.s.get_height() self.gap = 40 self.border = 20
Inside the init_vars()
method, we get the width and height of the image. We also define two variables.
lg = cairo.LinearGradient(w/2, 0, w/2, h*3) lg.add_color_stop_rgba(0, 0, 0, 0, 1) lg.add_color_stop_rgba(h, 0.2, 0.2, 0.2, 1) cr.set_source(lg) cr.paint()
The background of the window is filled with a gradient paint. The paint is a smooth blending from black to dark gray.
cr.translate(0, 2 * self.imageHeight + self.gap) cr.scale(1, -1)
This code flips the image and translates it below the original image. The translation operation is necessary, because the scaling operation makes the image upside down and translates the image up. To understand what happens, simply take a photograph and place it on the table. And flip it.
i = 0 while(i < self.imageHeight): cr.rectangle(self.border, self.imageHeight-i, self.imageWidth, 1) i = i + 1 cr.save() cr.clip() cr.set_source_surface(self.s, self.border, self.border) alpha = alpha - step cr.paint_with_alpha(alpha) cr.restore()
This is the final part. We make the second image transparent. But the transparency is not constant. The image gradually fades out. The reflected image is draw line by line. The clip()
method restricts the drawing to the rectangle of height 1. The paint_with_alpha()
takes the transparency into account when painting the current clip of the image surface.

Waiting demo
In this examle, we use transparency effect to create a waiting demo. We will draw 8 lines that will gradually fade out creating an illusion, that a line is moving. Such effects are often used to inform users that a lengthy task is going on behind the scenes. An example is streaming video over the Internet.
#!/usr/bin/python ''' ZetCode PyCairo tutorial This program creates a 'waiting' effect. author: Jan Bodnar website: zetcode.com last edited: August 2012 ''' from gi.repository import Gtk, GLib import cairo import math class cv(object): trs = ( ( 0.0, 0.15, 0.30, 0.5, 0.65, 0.80, 0.9, 1.0 ), ( 1.0, 0.0, 0.15, 0.30, 0.5, 0.65, 0.8, 0.9 ), ( 0.9, 1.0, 0.0, 0.15, 0.3, 0.5, 0.65, 0.8 ), ( 0.8, 0.9, 1.0, 0.0, 0.15, 0.3, 0.5, 0.65 ), ( 0.65, 0.8, 0.9, 1.0, 0.0, 0.15, 0.3, 0.5 ), ( 0.5, 0.65, 0.8, 0.9, 1.0, 0.0, 0.15, 0.3 ), ( 0.3, 0.5, 0.65, 0.8, 0.9, 1.0, 0.0, 0.15 ), ( 0.15, 0.3, 0.5, 0.65, 0.8, 0.9, 1.0, 0.0, ) ) SPEED = 100 CLIMIT = 1000 NLINES = 8 class Example(Gtk.Window): def __init__(self): super(Example, self).__init__() self.init_ui() def init_ui(self): self.darea = Gtk.DrawingArea() self.darea.connect("draw", self.on_draw) self.add(self.darea) self.count = 0 GLib.timeout_add(cv.SPEED, self.on_timer) self.set_title("Waiting") self.resize(250, 150) self.set_position(Gtk.WindowPosition.CENTER) self.connect("delete-event", Gtk.main_quit) self.show_all() def on_timer(self): self.count = self.count + 1 if self.count >= cv.CLIMIT: self.count = 0 self.darea.queue_draw() return True def on_draw(self, wid, cr): cr.set_line_width(3) cr.set_line_cap(cairo.LINE_CAP_ROUND) w, h = self.get_size() cr.translate(w/2, h/2) for i in range(cv.NLINES): cr.set_source_rgba(0, 0, 0, cv.trs[self.count%8][i]) cr.move_to(0.0, -10.0) cr.line_to(0.0, -40.0) cr.rotate(math.pi/4) cr.stroke() def main(): app = Example() Gtk.main() if __name__ == "__main__": main()
We draw eight lines with eight different alpha values.
class cv(object): trs = ( ( 0.0, 0.15, 0.30, 0.5, 0.65, 0.80, 0.9, 1.0 ), ( 1.0, 0.0, 0.15, 0.30, 0.5, 0.65, 0.8, 0.9 ), ( 0.9, 1.0, 0.0, 0.15, 0.3, 0.5, 0.65, 0.8 ), ( 0.8, 0.9, 1.0, 0.0, 0.15, 0.3, 0.5, 0.65 ), ( 0.65, 0.8, 0.9, 1.0, 0.0, 0.15, 0.3, 0.5 ), ( 0.5, 0.65, 0.8, 0.9, 1.0, 0.0, 0.15, 0.3 ), ( 0.3, 0.5, 0.65, 0.8, 0.9, 1.0, 0.0, 0.15 ), ( 0.15, 0.3, 0.5, 0.65, 0.8, 0.9, 1.0, 0.0, ) ) ...
This is a two dimensional tuple of transparency values used in this demo. There are 8 rows, each for one state. Each of the 8 lines will continuously use these values.
SPEED = 100 CLIMIT = 1000 NLINES = 8
The SPEED
constant controls the speed of the animation. The CLIMIT
is the maximum number for the self.count
variable. After reaching this limit, the variable is reset to 0. The NLINES
is the number of lines drawn in the example.
GLib.timeout_add(cv.SPEED, self.on_timer)
We use a timer function to create animation. Each cv.SPEED
ms the on_timer()
method is called.
def on_timer(self): self.count = self.count + 1 if self.count >= cv.CLIMIT: self.count = 0 self.darea.queue_draw() return True
In the on_timer()
method, we increase the self.count
variable. If the variable reaches the cv.CLIMIT
constant, it is set to 0. We guard against overflowing and we do not work with large numbers.
def on_draw(self, wid, cr): cr.set_line_width(3) cr.set_line_cap(cairo.LINE_CAP_ROUND) ...
We make the lines a bit thicker, so that they are better visible. We draw the lines with rouded caps.
w, h = self.get_size() cr.translate(w/2, h/2)
We position our drawing in the center of the window.
for i in range(cv.NLINES): cr.set_source_rgba(0, 0, 0, cv.trs[self.count%8][i]) cr.move_to(0.0, -10.0) cr.line_to(0.0, -40.0) cr.rotate(math.pi/4) cr.stroke()
In the for loop, we draw eight rotated lines with different transparency values. The lines are separated by an angle of 45 degrees.

In this part of the PyCairo tutorial, we have covered transparency.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论