返回介绍

solution / 1100-1199 / 1187.Make Array Strictly Increasing / README_EN

发布于 2024-06-17 01:03:22 字数 9190 浏览 0 评论 0 收藏 0

1187. Make Array Strictly Increasing

中文文档

Description

Given two integer arrays arr1 and arr2, return the minimum number of operations (possibly zero) needed to make arr1 strictly increasing.

In one operation, you can choose two indices 0 <= i < arr1.length and 0 <= j < arr2.length and do the assignment arr1[i] = arr2[j].

If there is no way to make arr1 strictly increasing, return -1.

 

Example 1:

Input: arr1 = [1,5,3,6,7], arr2 = [1,3,2,4]
Output: 1
Explanation: Replace 5 with 2, then arr1 = [1, 2, 3, 6, 7].

Example 2:

Input: arr1 = [1,5,3,6,7], arr2 = [4,3,1]
Output: 2
Explanation: Replace 5 with 3 and then replace 3 with 4. arr1 = [1, 3, 4, 6, 7].

Example 3:

Input: arr1 = [1,5,3,6,7], arr2 = [1,6,3,3]
Output: -1
Explanation: You can't make arr1 strictly increasing.

 

Constraints:

  • 1 <= arr1.length, arr2.length <= 2000
  • 0 <= arr1[i], arr2[i] <= 10^9

 

Solutions

Solution 1: Dynamic Programming

We define $f[i]$ as the minimum number of operations to convert $arr1[0,..,i]$ into a strictly increasing array, and $arr1[i]$ is not replaced. Therefore, we set two sentinels $-\infty$ and $\infty$ at the beginning and end of $arr1$. The last number is definitely not replaced, so $f[n-1]$ is the answer. We initialize $f[0]=0$, and the rest $f[i]=\infty$.

Next, we sort the array $arr2$ and remove duplicates for easy binary search.

For $i=1,..,n-1$, we consider whether $arr1[i-1]$ is replaced. If $arr1[i-1] \lt arr1[i]$, then $f[i]$ can be transferred from $f[i-1]$, that is, $f[i] = f[i-1]$. Then, we consider the case where $arr[i-1]$ is replaced. Obviously, $arr[i-1]$ should be replaced with a number as large as possible and less than $arr[i]$. We perform a binary search in the array $arr2$ and find the first index $j$ that is greater than or equal to $arr[i]$. Then we enumerate the number of replacements in the range $k \in [1, min(i-1, j)]$. If $arr[i-k-1] \lt arr2[j-k]$, then $f[i]$ can be transferred from $f[i-k-1]$, that is, $f[i] = \min(f[i], f[i-k-1] + k)$.

Finally, if $f[n-1] \geq \infty$, it means that it cannot be converted into a strictly increasing array, return $-1$, otherwise return $f[n-1]$.

The time complexity is $(n \times (\log m + \min(m, n)))$, and the space complexity is $O(n)$. Here, $n$ is the length of $arr1$.

class Solution:
  def makeArrayIncreasing(self, arr1: List[int], arr2: List[int]) -> int:
    arr2.sort()
    m = 0
    for x in arr2:
      if m == 0 or x != arr2[m - 1]:
        arr2[m] = x
        m += 1
    arr2 = arr2[:m]
    arr = [-inf] + arr1 + [inf]
    n = len(arr)
    f = [inf] * n
    f[0] = 0
    for i in range(1, n):
      if arr[i - 1] < arr[i]:
        f[i] = f[i - 1]
      j = bisect_left(arr2, arr[i])
      for k in range(1, min(i - 1, j) + 1):
        if arr[i - k - 1] < arr2[j - k]:
          f[i] = min(f[i], f[i - k - 1] + k)
    return -1 if f[n - 1] >= inf else f[n - 1]
class Solution {
  public int makeArrayIncreasing(int[] arr1, int[] arr2) {
    Arrays.sort(arr2);
    int m = 0;
    for (int x : arr2) {
      if (m == 0 || x != arr2[m - 1]) {
        arr2[m++] = x;
      }
    }
    final int inf = 1 << 30;
    int[] arr = new int[arr1.length + 2];
    arr[0] = -inf;
    arr[arr.length - 1] = inf;
    System.arraycopy(arr1, 0, arr, 1, arr1.length);
    int[] f = new int[arr.length];
    Arrays.fill(f, inf);
    f[0] = 0;
    for (int i = 1; i < arr.length; ++i) {
      if (arr[i - 1] < arr[i]) {
        f[i] = f[i - 1];
      }
      int j = search(arr2, arr[i], m);
      for (int k = 1; k <= Math.min(i - 1, j); ++k) {
        if (arr[i - k - 1] < arr2[j - k]) {
          f[i] = Math.min(f[i], f[i - k - 1] + k);
        }
      }
    }
    return f[arr.length - 1] >= inf ? -1 : f[arr.length - 1];
  }

  private int search(int[] nums, int x, int n) {
    int l = 0, r = n;
    while (l < r) {
      int mid = (l + r) >> 1;
      if (nums[mid] >= x) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }
}
class Solution {
public:
  int makeArrayIncreasing(vector<int>& arr1, vector<int>& arr2) {
    sort(arr2.begin(), arr2.end());
    arr2.erase(unique(arr2.begin(), arr2.end()), arr2.end());
    const int inf = 1 << 30;
    arr1.insert(arr1.begin(), -inf);
    arr1.push_back(inf);
    int n = arr1.size();
    vector<int> f(n, inf);
    f[0] = 0;
    for (int i = 1; i < n; ++i) {
      if (arr1[i - 1] < arr1[i]) {
        f[i] = f[i - 1];
      }
      int j = lower_bound(arr2.begin(), arr2.end(), arr1[i]) - arr2.begin();
      for (int k = 1; k <= min(i - 1, j); ++k) {
        if (arr1[i - k - 1] < arr2[j - k]) {
          f[i] = min(f[i], f[i - k - 1] + k);
        }
      }
    }
    return f[n - 1] >= inf ? -1 : f[n - 1];
  }
};
func makeArrayIncreasing(arr1 []int, arr2 []int) int {
  sort.Ints(arr2)
  m := 0
  for _, x := range arr2 {
    if m == 0 || x != arr2[m-1] {
      arr2[m] = x
      m++
    }
  }
  arr2 = arr2[:m]
  const inf = 1 << 30
  arr1 = append([]int{-inf}, arr1...)
  arr1 = append(arr1, inf)
  n := len(arr1)
  f := make([]int, n)
  for i := range f {
    f[i] = inf
  }
  f[0] = 0
  for i := 1; i < n; i++ {
    if arr1[i-1] < arr1[i] {
      f[i] = f[i-1]
    }
    j := sort.SearchInts(arr2, arr1[i])
    for k := 1; k <= min(i-1, j); k++ {
      if arr1[i-k-1] < arr2[j-k] {
        f[i] = min(f[i], f[i-k-1]+k)
      }
    }
  }
  if f[n-1] >= inf {
    return -1
  }
  return f[n-1]
}
function makeArrayIncreasing(arr1: number[], arr2: number[]): number {
  arr2.sort((a, b) => a - b);
  let m = 0;
  for (const x of arr2) {
    if (m === 0 || x !== arr2[m - 1]) {
      arr2[m++] = x;
    }
  }
  arr2 = arr2.slice(0, m);
  const inf = 1 << 30;
  arr1 = [-inf, ...arr1, inf];
  const n = arr1.length;
  const f: number[] = new Array(n).fill(inf);
  f[0] = 0;
  const search = (arr: number[], x: number): number => {
    let l = 0;
    let r = arr.length;
    while (l < r) {
      const mid = (l + r) >> 1;
      if (arr[mid] >= x) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  };
  for (let i = 1; i < n; ++i) {
    if (arr1[i - 1] < arr1[i]) {
      f[i] = f[i - 1];
    }
    const j = search(arr2, arr1[i]);
    for (let k = 1; k <= Math.min(i - 1, j); ++k) {
      if (arr1[i - k - 1] < arr2[j - k]) {
        f[i] = Math.min(f[i], f[i - k - 1] + k);
      }
    }
  }
  return f[n - 1] >= inf ? -1 : f[n - 1];
}
public class Solution {
  public int MakeArrayIncreasing(int[] arr1, int[] arr2) {
    Array.Sort(arr2);
    int m = 0;
    foreach (int x in arr2) {
      if (m == 0 || x != arr2[m - 1]) {
        arr2[m++] = x;
      }
    }
    int inf = 1 << 30;
    int[] arr = new int[arr1.Length + 2];
    arr[0] = -inf;
    arr[arr.Length - 1] = inf;
    for (int i = 0; i < arr1.Length; ++i) {
      arr[i + 1] = arr1[i];
    }
    int[] f = new int[arr.Length];
    Array.Fill(f, inf);
    f[0] = 0;
    for (int i = 1; i < arr.Length; ++i) {
      if (arr[i - 1] < arr[i]) {
        f[i] = f[i - 1];
      }
      int j = search(arr2, arr[i], m);
      for (int k = 1; k <= Math.Min(i - 1, j); ++k) {
        if (arr[i - k - 1] < arr2[j - k]) {
          f[i] = Math.Min(f[i], f[i - k - 1] + k);
        }
      }
    }
    return f[arr.Length - 1] >= inf ? -1 : f[arr.Length - 1];
  }

  private int search(int[] nums, int x, int n) {
    int l = 0, r = n;
    while (l < r) {
      int mid = (l + r) >> 1;
      if (nums[mid] >= x) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文