返回介绍

solution / 1100-1199 / 1162.As Far from Land as Possible / README_EN

发布于 2024-06-17 01:03:22 字数 6716 浏览 0 评论 0 收藏 0

1162. As Far from Land as Possible

中文文档

Description

Given an n x n grid containing only values 0 and 1 , where 0 represents water and 1 represents land, find a water cell such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in the grid, return -1 .

The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1) is |x0 - x1| + |y0 - y1| .

Example 1:

Input: grid = [[1,0,1],[0,0,0],[1,0,1]]
Output: 2
Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.

Example 2:

Input: grid = [[1,0,0],[0,0,0],[0,0,0]]
Output: 4
Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 100
  • grid[i][j] is 0 or 1

Solutions

Solution 1: BFS

We can add all land cells to the queue $q$. If the queue is empty, or the number of elements in the queue equals the number of cells in the grid, it means that the grid contains only land or ocean, so return $-1$.

Otherwise, we start BFS from the land cells. Define the initial step count $ans=-1$.

In each round of search, we spread all cells in the queue in four directions. If a cell is an ocean cell, we mark it as a land cell and add it to the queue. After a round of spreading, we increase the step count by $1$. Repeat this process until the queue is empty.

Finally, we return the step count $ans$.

The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the side length of the grid.

class Solution:
  def maxDistance(self, grid: List[List[int]]) -> int:
    n = len(grid)
    q = deque((i, j) for i in range(n) for j in range(n) if grid[i][j])
    ans = -1
    if len(q) in (0, n * n):
      return ans
    dirs = (-1, 0, 1, 0, -1)
    while q:
      for _ in range(len(q)):
        i, j = q.popleft()
        for a, b in pairwise(dirs):
          x, y = i + a, j + b
          if 0 <= x < n and 0 <= y < n and grid[x][y] == 0:
            grid[x][y] = 1
            q.append((x, y))
      ans += 1
    return ans
class Solution {
  public int maxDistance(int[][] grid) {
    int n = grid.length;
    Deque<int[]> q = new ArrayDeque<>();
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        if (grid[i][j] == 1) {
          q.offer(new int[] {i, j});
        }
      }
    }
    int ans = -1;
    if (q.isEmpty() || q.size() == n * n) {
      return ans;
    }
    int[] dirs = {-1, 0, 1, 0, -1};
    while (!q.isEmpty()) {
      for (int i = q.size(); i > 0; --i) {
        int[] p = q.poll();
        for (int k = 0; k < 4; ++k) {
          int x = p[0] + dirs[k], y = p[1] + dirs[k + 1];
          if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0) {
            grid[x][y] = 1;
            q.offer(new int[] {x, y});
          }
        }
      }
      ++ans;
    }
    return ans;
  }
}
class Solution {
public:
  int maxDistance(vector<vector<int>>& grid) {
    int n = grid.size();
    queue<pair<int, int>> q;
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        if (grid[i][j]) {
          q.emplace(i, j);
        }
      }
    }
    int ans = -1;
    if (q.empty() || q.size() == n * n) {
      return ans;
    }
    int dirs[5] = {-1, 0, 1, 0, -1};
    while (!q.empty()) {
      for (int m = q.size(); m; --m) {
        auto [i, j] = q.front();
        q.pop();
        for (int k = 0; k < 4; ++k) {
          int x = i + dirs[k], y = j + dirs[k + 1];
          if (x >= 0 && x < n && y >= 0 && y < n && !grid[x][y]) {
            grid[x][y] = 1;
            q.emplace(x, y);
          }
        }
      }
      ++ans;
    }
    return ans;
  }
};
func maxDistance(grid [][]int) int {
  n := len(grid)
  q := [][2]int{}
  for i, row := range grid {
    for j, v := range row {
      if v == 1 {
        q = append(q, [2]int{i, j})
      }
    }
  }
  ans := -1
  if len(q) == 0 || len(q) == n*n {
    return ans
  }
  dirs := [5]int{-1, 0, 1, 0, -1}
  for len(q) > 0 {
    for i := len(q); i > 0; i-- {
      p := q[0]
      q = q[1:]
      for k := 0; k < 4; k++ {
        x, y := p[0]+dirs[k], p[1]+dirs[k+1]
        if x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 0 {
          grid[x][y] = 1
          q = append(q, [2]int{x, y})
        }
      }
    }
    ans++
  }
  return ans
}
function maxDistance(grid: number[][]): number {
  const n = grid.length;
  const q: [number, number][] = [];
  for (let i = 0; i < n; ++i) {
    for (let j = 0; j < n; ++j) {
      if (grid[i][j] === 1) {
        q.push([i, j]);
      }
    }
  }
  let ans = -1;
  if (q.length === 0 || q.length === n * n) {
    return ans;
  }
  const dirs: number[] = [-1, 0, 1, 0, -1];
  while (q.length > 0) {
    for (let m = q.length; m; --m) {
      const [i, j] = q.shift()!;
      for (let k = 0; k < 4; ++k) {
        const x = i + dirs[k];
        const y = j + dirs[k + 1];
        if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] === 0) {
          grid[x][y] = 1;
          q.push([x, y]);
        }
      }
    }
    ++ans;
  }
  return ans;
}

 

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文