返回介绍

solution / 2600-2699 / 2641.Cousins in Binary Tree II / README_EN

发布于 2024-06-17 01:03:01 字数 14961 浏览 0 评论 0 收藏 0

2641. Cousins in Binary Tree II

中文文档

Description

Given the root of a binary tree, replace the value of each node in the tree with the sum of all its cousins' values.

Two nodes of a binary tree are cousins if they have the same depth with different parents.

Return _the _root_ of the modified tree_.

Note that the depth of a node is the number of edges in the path from the root node to it.

 

Example 1:

Input: root = [5,4,9,1,10,null,7]
Output: [0,0,0,7,7,null,11]
Explanation: The diagram above shows the initial binary tree and the binary tree after changing the value of each node.
- Node with value 5 does not have any cousins so its sum is 0.
- Node with value 4 does not have any cousins so its sum is 0.
- Node with value 9 does not have any cousins so its sum is 0.
- Node with value 1 has a cousin with value 7 so its sum is 7.
- Node with value 10 has a cousin with value 7 so its sum is 7.
- Node with value 7 has cousins with values 1 and 10 so its sum is 11.

Example 2:

Input: root = [3,1,2]
Output: [0,0,0]
Explanation: The diagram above shows the initial binary tree and the binary tree after changing the value of each node.
- Node with value 3 does not have any cousins so its sum is 0.
- Node with value 1 does not have any cousins so its sum is 0.
- Node with value 2 does not have any cousins so its sum is 0.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 105].
  • 1 <= Node.val <= 104

Solutions

Solution 1: Two DFS Traversals

We create a list $s$ to record the sum of the node values at each level of the binary tree, where $s[depth]$ represents the sum of the node values at the $depth$-th level (the root node is at level $0$).

Next, we perform a DFS traversal to calculate the values in the array $s$. Then, we perform another DFS traversal to update the values of each node's children. The value of a child node is equal to the sum of the node values at its level minus the value of the child node and its sibling nodes.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def replaceValueInTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
    def dfs1(root: Optional[TreeNode], depth: int):
      if root is None:
        return
      if len(s) <= depth:
        s.append(0)
      s[depth] += root.val
      dfs1(root.left, depth + 1)
      dfs1(root.right, depth + 1)

    def dfs2(root: Optional[TreeNode], depth: int):
      sub = (root.left.val if root.left else 0) + (
        root.right.val if root.right else 0
      )
      depth += 1
      if root.left:
        root.left.val = s[depth] - sub
        dfs2(root.left, depth)
      if root.right:
        root.right.val = s[depth] - sub
        dfs2(root.right, depth)

    s = []
    dfs1(root, 0)
    root.val = 0
    dfs2(root, 0)
    return root
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  private List<Integer> s = new ArrayList<>();

  public TreeNode replaceValueInTree(TreeNode root) {
    dfs1(root, 0);
    root.val = 0;
    dfs2(root, 0);
    return root;
  }

  private void dfs1(TreeNode root, int depth) {
    if (root == null) {
      return;
    }
    if (s.size() <= depth) {
      s.add(0);
    }
    s.set(depth, s.get(depth) + root.val);
    dfs1(root.left, depth + 1);
    dfs1(root.right, depth + 1);
  }

  private void dfs2(TreeNode root, int depth) {
    int l = root.left == null ? 0 : root.left.val;
    int r = root.right == null ? 0 : root.right.val;
    int sub = l + r;
    ++depth;
    if (root.left != null) {
      root.left.val = s.get(depth) - sub;
      dfs2(root.left, depth);
    }
    if (root.right != null) {
      root.right.val = s.get(depth) - sub;
      dfs2(root.right, depth);
    }
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  TreeNode* replaceValueInTree(TreeNode* root) {
    memset(s, 0, sizeof(s));
    dfs1(root, 0);
    root->val = 0;
    dfs2(root, 0);
    return root;
  }

private:
  int s[100010];
  void dfs1(TreeNode* root, int depth) {
    if (!root) {
      return;
    }
    s[depth] += root->val;
    dfs1(root->left, depth + 1);
    dfs1(root->right, depth + 1);
  };

  void dfs2(TreeNode* root, int depth) {
    int l = root->left ? root->left->val : 0;
    int r = root->right ? root->right->val : 0;
    int sub = l + r;
    ++depth;
    if (root->left) {
      root->left->val = s[depth] - sub;
      dfs2(root->left, depth);
    }
    if (root->right) {
      root->right->val = s[depth] - sub;
      dfs2(root->right, depth);
    }
  };
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func replaceValueInTree(root *TreeNode) *TreeNode {
  s := []int{}
  var dfs1 func(*TreeNode, int)
  dfs1 = func(root *TreeNode, depth int) {
    if root == nil {
      return
    }
    if len(s) <= depth {
      s = append(s, 0)
    }
    s[depth] += root.Val
    dfs1(root.Left, depth+1)
    dfs1(root.Right, depth+1)
  }
  var dfs2 func(*TreeNode, int)
  dfs2 = func(root *TreeNode, depth int) {
    l, r := 0, 0
    if root.Left != nil {
      l = root.Left.Val
    }
    if root.Right != nil {
      r = root.Right.Val
    }
    sub := l + r
    depth++
    if root.Left != nil {
      root.Left.Val = s[depth] - sub
      dfs2(root.Left, depth)
    }
    if root.Right != nil {
      root.Right.Val = s[depth] - sub
      dfs2(root.Right, depth)
    }
  }
  dfs1(root, 0)
  root.Val = 0
  dfs2(root, 0)
  return root
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function replaceValueInTree(root: TreeNode | null): TreeNode | null {
  const s: number[] = [];
  const dfs1 = (root: TreeNode | null, depth: number) => {
    if (!root) {
      return;
    }
    if (s.length <= depth) {
      s.push(0);
    }
    s[depth] += root.val;
    dfs1(root.left, depth + 1);
    dfs1(root.right, depth + 1);
  };
  const dfs2 = (root: TreeNode | null, depth: number) => {
    const sub = (root.left?.val || 0) + (root.right?.val || 0);
    ++depth;
    if (root.left) {
      root.left.val = s[depth] - sub;
      dfs2(root.left, depth);
    }
    if (root.right) {
      root.right.val = s[depth] - sub;
      dfs2(root.right, depth);
    }
  };
  dfs1(root, 0);
  root.val = 0;
  dfs2(root, 0);
  return root;
}

Solution 2: Breadth-First Search (BFS)

First, we update the root node's value to $0$, and use a queue $q$ to store all nodes at each level, initially enqueueing the root node.

Then, we traverse the queue, calculate the sum $s$ of all child nodes' values at each level, then calculate the sum $sub$ of each child node and its sibling nodes' values, and then update each child node's value to $s - sub$.

After the traversal ends, we return the root node.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def replaceValueInTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
    root.val = 0
    q = [root]
    while q:
      t = []
      s = 0
      for node in q:
        if node.left:
          t.append(node.left)
          s += node.left.val
        if node.right:
          t.append(node.right)
          s += node.right.val
      for node in q:
        sub = (node.left.val if node.left else 0) + (
          node.right.val if node.right else 0
        )
        if node.left:
          node.left.val = s - sub
        if node.right:
          node.right.val = s - sub
      q = t
    return root
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public TreeNode replaceValueInTree(TreeNode root) {
    root.val = 0;
    List<TreeNode> q = List.of(root);
    while (!q.isEmpty()) {
      List<TreeNode> t = new ArrayList<>();
      int s = 0;
      for (TreeNode node : q) {
        if (node.left != null) {
          t.add(node.left);
          s += node.left.val;
        }
        if (node.right != null) {
          t.add(node.right);
          s += node.right.val;
        }
      }
      for (TreeNode node : q) {
        int sub = (node.left == null ? 0 : node.left.val)
          + (node.right == null ? 0 : node.right.val);
        if (node.left != null) {
          node.left.val = s - sub;
        }
        if (node.right != null) {
          node.right.val = s - sub;
        }
      }
      q = t;
    }
    return root;
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  TreeNode* replaceValueInTree(TreeNode* root) {
    root->val = 0;
    vector<TreeNode*> q = {root};
    while (!q.empty()) {
      vector<TreeNode*> t;
      int s = 0;
      for (TreeNode* node : q) {
        if (node->left) {
          t.emplace_back(node->left);
          s += node->left->val;
        }
        if (node->right) {
          t.emplace_back(node->right);
          s += node->right->val;
        }
      }
      for (TreeNode* node : q) {
        int sub = (node->left ? node->left->val : 0) + (node->right ? node->right->val : 0);
        if (node->left) {
          node->left->val = s - sub;
        }
        if (node->right) {
          node->right->val = s - sub;
        }
      }
      q = move(t);
    }
    return root;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func replaceValueInTree(root *TreeNode) *TreeNode {
  root.Val = 0
  q := []*TreeNode{root}
  for len(q) > 0 {
    t := []*TreeNode{}
    s := 0
    for _, node := range q {
      if node.Left != nil {
        t = append(t, node.Left)
        s += node.Left.Val
      }
      if node.Right != nil {
        t = append(t, node.Right)
        s += node.Right.Val
      }
    }
    for _, node := range q {
      sub := 0
      if node.Left != nil {
        sub += node.Left.Val
      }
      if node.Right != nil {
        sub += node.Right.Val
      }
      if node.Left != nil {
        node.Left.Val = s - sub
      }
      if node.Right != nil {
        node.Right.Val = s - sub
      }
    }
    q = t
  }
  return root
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function replaceValueInTree(root: TreeNode | null): TreeNode | null {
  root.val = 0;
  const q: TreeNode[] = [root];
  while (q.length > 0) {
    const t: TreeNode[] = [];
    let s = 0;
    for (const { left, right } of q) {
      if (left) {
        t.push(left);
        s += left.val;
      }
      if (right) {
        t.push(right);
        s += right.val;
      }
    }
    for (const { left, right } of q) {
      const sub = (left?.val || 0) + (right?.val || 0);
      if (left) {
        left.val = s - sub;
      }
      if (right) {
        right.val = s - sub;
      }
    }
    q.splice(0, q.length, ...t);
  }
  return root;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文